
ar
X

iv
:2

20
2.

02
67

2v
1

 [
cs

.G
T

]
 6

 F
eb

 2
02

2

(Almost) Envy-Free, Proportional and Efficient Allocations of an

Indivisible Mixed Manna∗

Vasilis Livanos†

livanos3@illinois.edu

Ruta Mehta‡

rutameht@illinois.edu

Aniket Murhekar§

aniket2@illinois.edu

Abstract

We study the problem of finding fair and efficient allocations of a set of indivisible items to
a set of agents, where each item may be a good (positively valued) for some agents and a bad
(negatively valued) for others, i.e., a mixed manna. As fairness notions, we consider arguably
the strongest possible relaxations of envy-freeness and proportionality, namely envy-free up to
any item (EFX and EFX0), and proportional up to the maximin good or any bad (PropMX
and PropMX0). Our efficiency notion is Pareto-optimality (PO).

We study two types of instances: (i) Separable, where the item set can be partitioned into
goods and bads, and (ii) Restricted mixed goods (RMG), where for each item j, every agent has
either a non-positive value for j, or values j at the same vj > 0. We obtain polynomial-time
algorithms for the following:

• Separable instances: PropMX0 allocation.

• RMG instances: Let pure bads be the set of items that everyone values negatively.

– PropMX allocation for general pure bads.

– EFX+PropMX allocation for identically-ordered pure bads.

– EFX+PropMX+PO allocation for identical pure bads.

Finally, if the RMG instances are further restricted to binary mixed goods where all the vj ’s
are the same, we strengthen the results to guarantee EFX0 and PropMX0 respectively.

1 Introduction

The problem of fair division is concerned with allocating items to agents in a fair and efficient
manner. Formally introduced by Steinhaus [30], fair division is an active area of research studied
across fields like computer science and economics. Most work has focused on the fair division of
goods: items which provide non-negative value (or utility) to the agents to whom they are allocated.
However, several practical scenarios involve bads (or chores). Bads are items which impose a cost
(or disutility) to the agent to whom they are allocated. Generalizing both settings, we study fair
division of a set M of indivisible items, where each j ∈ M can be a good for some agents and a
bad for others – a mixed manna. Examples of mixed manna include splitting assets and liabilities
when dissolving a partnership, dividing tasks among various team members, and deciding teaching
assignments between faculty. The valuation of agent i for a set S ⊆ M of items is defined by an

∗Supported by NSF grant CCF-1750436 (CAREER)
†University of Illinois at Urbana-Champaign, USA
‡University of Illinois at Urbana-Champaign, USA
§University of Illinois at Urbana-Champaign, USA

1

http://arxiv.org/abs/2202.02672v1

additive function vi(S) =
∑

j∈S vij where vij ∈ R is the value agent i has for item j. We say that
item j is a good for agent i if vij ≥ 0, otherwise it is a bad for her.

Arguably, the two most popular fairness notions are of envy-freeness (EF) [17, 31] and pro-
portionality (Prop) [30]. EF requires that every agent (weakly) prefers her own allocation than
anyone else’s, while Prop requires that every agent gets her proportional value, i.e., 1n -fraction of
her value for all the items. When items are divisible, both EF and Prop allocations are known to
exist. However, in the case of indivisible items, neither may exist for very simple examples, like
allocating one good among two agents who value it equally.

One of the strongest relaxations of EF for indivisible items is EF up to any item (EFX) [14].
That is, for goods manna, every agent i does not envy any other agent k after removal of a
(positively-valued) good from k’s bundle, and for bads manna the envy vanishes after removal of
any bad from i’s bundle. Generalizing these to mixed manna, we say that an allocation is EFX if
each agent i does not envy another agent k after either removal of a positively-valued good from
k’s bundle or removal of a bad from i’s bundle.

The analogous relaxation for proportionality is the notion of proportionality up to any item
(PropX), defined by Aziz et al. [5]. For goods, an allocation is said to be PropX if every agent can
receive her proportional share after the addition to her bundle of any one good not in her bundle.
Similarly, for bads, an allocation is said to be PropX if every agent can receive her proportional
share after removing any one bad assigned to her. While PropX need not exist for goods [26, 5],
Li et al. [24] showed that a PropX allocation always exists for bads and can be computed in
polynomial time. Since PropX need not exist for goods, Baklanov et al. [6] introduce the notion
of proportionality up to the maximin good (PropM), a weaker version of PropX. They show that
PropM allocations always exist for the setting of goods and agents with additive valuations, and
that they can be computed in polynomial time.

Relaxations of Prop have not been studied previously for indivisible mixed manna. Combining
the strongest possible guarantees, we define the following relaxation for mixed manna: proportion-
ality up to the maximin good or any bad (PropMX). Informally, an allocation is said to be PropMX
if every agent can receive her proportional share after the addition to her bundle of the maximin
positively-valued good for that agent, or after the removal of any one bad assigned to her.

In addition to being fair, it is important for allocations to be efficient. The standard notion of
economic efficiency is Pareto optimality (PO). An allocation is said to be PO if no other allocation
makes an agent better off without making someone else worse off.

In this paper we ask if it possible to achieve all of EFX, PropMX, and PO in a single allocation.
And if yes, then can it be computed in polynomial time. The answer is not known even for goods
(bads) only manna. In particular, existence of an EFX allocation is a celebrated open question
even for goods (bads) manna [29]. And therefore the focus has been on resolving special cases
(see Section 1.2 for a detailed discussion). Furthermore, it has been noted that mixed manna
is significantly harder to handle than the goods (bads) manna [12, 23]. Next we describe our
contributions in this context.

1.1 Our Contributions.

We study the problem of computing EFX+PO and PropMX+PO allocations for mixed manna
instances. Given that computing EFX (and EFX+PO) allocations is a challenging problem even
for general instances of goods, a significant amount of past works have focused on sub-classes by
restricting the values that agents have for the items, see [3, 27, 10, 19, 1, 2] and references therein for
practical scenarios involving different sub-classes. Among these, the valuation classes of identical
[28, 10, 1, 2], identical order preferences (IDO) [28, 24], restricted additive [7], and binary [10, 21, 11]

2

are well-studied for goods (bads) manna. We study all of these for mixed manna.
First, to extend these to mixed manna we need to partition the items into three sets: the set

M+ of mixed goods, which are valued positively by at least one agent; the set M0 of dummy bads,
which are not valued positively by any agent but may be valued at zero by some; and set M− of
pure bads which are valued negatively by all agents.

We consider the following:

• Separable instances: For every item j, all the agents value it either non-negatively or nega-
tively. That is the item set can be partitioned in to goods (non-negatively valued) and bads
(negatively valued).

• Restricted Mixed goods instances: For every item j ∈ M+ there exists a value vj > 0 such
that if an agent values j positively, then she values it at vj . Furthermore, if vj = vj′ for all
j, j′ ∈M+, then the instance is called a binary mixed goods instance.

Note that the separable and RMG instances are incomparable. We obtain following results for
these settings.

• ForRestricted Mixed Goods, we give polynomial-time algorithms for computing allocation
that is

– PropMX+EFX+PO when agents have identical valuation over the pure bads M− (The-
orem 2).

– PropMX+EFX when agents have identical ordinal preference (IDO) over the pure bads
(Theorem 5).

– PropMX for the case of general pure bads (Theorem 6).

• For the special case of binary mixed goods, we strengthen the previous results to EFX0 and
PropMX0 (Theorem 3) respectively.1

• In showing the above results, we show that an EFX+PO allocation can be computed in
polynomial-time for a goods only manna with restricted valuations (Theorem 1). This
class is orthogonal to the class of IDO goods, for which EFX allocations are known to be
efficiently computable [28].

• For separable instances, we present an algorithm which returns, in polynomial time, an
allocation that is PropMX0 (Theorem 4).

We note that as a corollary we obtain some of the results of [1] and [2] for the binary and
identical mixed manna. We observe that EFX (resp. EFX0) implies PropMX (resp. PropMX0),
and therefore whenever we get EFX we get PropMX, but not vice-versa. Furthermore, we show
via a counterexample that one cannot hope to obtain a PropMX0+PO allocation, even for the
goods manna (Appendix A.2), and hence the first two results for the RMG instances can not be
strengthened.

The subclasses we consider are interesting from a practical viewpoint as well. In many settings,
there is a subset of “interested agents” for an item who all value the item the same, and the rest of
the agents do not value it. For example, in a partnership dissolution, a risky asset j could be seen as
a good by some agents, who all value it at vj (because the forecasted return is vj), but other agents

1EFX0 is a stronger notion where the EFX condition wrt goods also considers zero valued items. Similarly,
PropMX0 is a stronger notion where the maximin good in the definition of PropMX is allowed to have zero value.

3

might not be interested or even value it negatively due to the inherent risk. This is captured by
restricted (mixed) goods. Likewise, identical and binary preferences often arise in practice; binary
valuations can be used by agents to indicate approval or indifference towards a particular good.

1.2 Other Related Work

EF1 and EFX. The envy-cycle algorithm [25] showed that allocations that are envy-free up to
the removal of the most valued good (EF1) can be computed in polynomial-time; EF1 is a weaker
fairness notion than EFX. This algorithm was adapted to show that EFX allocations for IDO goods
can be computed in polynomial-time [28]. For bads, [11] showed a variant of envy-cycle algorithm
(using the top-envy graph) can be adapted for computing an EF1 allocation for separable instances
(which they refer to as doubly monotone instances). In the goods setting, EFX allocations exist
for 3 agents [15], and for the class of bivalued instances [3].

EF1/EFX + PO. The following results are for the case of goods. Barman et al. [9] show that
EF1+PO allocations exist for and can be computed in pseudo-polynomial time. Recently, [27]
showed that for k-ary instances with constant k or for instances with constantly many agents, an
EF1+PO allocation can be computed in polynomial-time. For bivalued instances, an EFX+PO
allocation is poly-time computable [19]. For bivalued instances of chores, [20] showed that an
EF1+PO is polynomial-time computable. For a mixed manna with only two agents, [4] showed
that an EF1+PO allocation is polynomial-time time computable.

Mixed Manna. For mixed manna, [5] showed that a Prop1+PO allocation of an indivisible
mixed manna is polynomial-time computable. For the special cases of identical or ternary utilities,
[1, 2] showed that an EFX+PO allocation can be polynomial-time. The competitive division of a
mixed manna has also been studied [18, 12].

1.3 Organization

Section 2 sets up various technical preliminaries on fairness notions and their relations. Section 3
describes our results for the RMG setting with identical bads. In Section 4 we discuss our result for
Separable instances. In Section 5 we extend our results for the RMG setting for IDO and general
bads. We discuss the results along with some open questions in Section 6. Appendix A contains
two counterexamples of interest.

2 Preliminaries

Problem instance. A fair division instance is a tuple (N,M,V), where N = [n] is a set of
n ∈ N agents, M = [m] is a set of m ∈ N indivisible items, and V = {v1, . . . , vn} is a set of utility
functions, one for each agent i ∈ N . Each utility function vi : M → R is specified by m numbers
vij ∈ R, one for each item j ∈M , which denotes the value agent i has for receiving item j. When
vij ≥ 0 for every i ∈ N, j ∈M , we call the instance a goods instance. In the case of vij < 0 for every
i ∈ N, j ∈ M , we call the instance a bads instance. Finally, when we place no restrictions on vij ,
the instance is called a mixed manna instance. We assume that the value functions are additive,
that is, for every agent i ∈ N , and for S ⊆ M , vi(S) =

∑

j∈S vij . For notational ease, we write
v(S − j) instead of v(S \ {j}) and v(S + j) instead of v(S ∪ {j}). Throughout this paper, unless
stated otherwise, we assume every fair division instance is a mixed manna instance.

4

Partitioning the mixed manna. In the mixed manna setting, a useful way of partitioning the
set of items M is into the three sets M+,M0, and M−, where:

1. M+ = {j ∈M : ∃i ∈ N, vij > 0} is the set of mixed goods,

2. M0 = {j ∈M : ∀i ∈ N, vij ≤ 0 and ∃i ∈ N, vij = 0} is the set of dummy bads, and

3. M− = {j ∈M : ∀i ∈ N, vij < 0} is the set of pure bads.

In other words, M+ comprises of the items which are pure goods for some agent, and may be
bads or dummies for others; M0 comprises of items which are dummy for some agent, and are not
goods for anyone; M− comprises of items which are bads for everyone.

Instance types. We call a fair division instance (N,M,V) a separable instance if we can partition
M into M≥0 and M−, where M≥0 := {j ∈ M | ∀i ∈ N, vij ≥ 0}, the set of items which are not
bads for any agent, and M− is the set of pure bads.

We also define the setting of restricted mixed goods, in which for every j ∈ M+, there exists a
value vj > 0 such that for all i ∈ N , if vij > 0, then vij = vj (notice that if vij ≤ 0 for a mixed
good j, then no restrictions are placed on vij). A special case of the restricted mixed goods setting
is the binary mixed goods setting, where for all j, j′ ∈M+, vj = vj′ .

An instance is called identical ordering (IDO), if all agents have the same ordinal preference
for all items, i.e., there exists an ordering of the items in M such that for all agents i ∈ N ,
vi1 ≤ vi2 ≤ · · · ≤ vim. A special case of an IDO instance is the identical setting, in which for every
j ∈M , vij = vi′j for all i, i′ ∈ N .

Allocation. An allocation x of items to agents is an n-partition x1, . . . ,xn of the items, where
agent i is allotted the bundle xi ⊆M , and gets a total utility of vi(xi).

Pareto-optimality. An allocation y Pareto-dominates an allocation x if vi(yi) ≥ vi(xi),∀i ∈ N
and there exists h ∈ N s.t. vh(yh) > vh(xh). An allocation is said to be Pareto-optimal (PO) if no
Pareto-allocation dominates it.

Welfare functions. Given an allocation x:

1. the (utilitarian) social welfare SW(x) of x is the sum of agents’ utilities under x, i.e., SW(x) =
∑

i∈N vi(xi).

2. the Nash welfare NW(x) of x is the geometric mean of the agents’ utilities under x, i.e.,
NW(x) = (

∏

i vi(xi))
1/n.

Any allocation x that maximizes the social welfare or the Nash welfare is Pareto-optimal, since a
dominating allocation will have higher welfare than x, which is not possible.

Fairness notions. We now define the fairness notions of interest.

Definition 1. (Envy-freeness and its relaxations.) An allocation x is said to be:

1. Envy-free if for all i, h ∈ N , vi(xi) ≥ vi(xh).

2. Envy-free up to any item (EFX) if for all i, h ∈ N either

5

(i) vi(xi) ≥ vi(xh − g) ∀g ∈ xh s.t. vig > 0, or

(ii) vi(xi − c) ≥ vi(xh) ∀c ∈ xi s.t. vic < 0.

3. EFX0 if for all i, h ∈ N either

(i) vi(xi) ≥ vi(xh − g) ∀g ∈ xh s.t. vig ≥ 0, or

(ii) vi(xi − c) ≥ vi(xh) ∀c ∈ xi s.t. vic < 0.

The difference between the definitions of EFX and EFX0 is that EFX allows for the envy of an
agent i towards agent h to disappear after removing any positively-valued item from the bundle of
h, whereas in EFX0 this envy must disappear after removing any non-negative valued item. Thus,
EFX0 is a stronger notion than EFX, and it is easy to see that any EFX0 allocation is EFX, but
not vice-versa.

We say that an agent i envies an agent h if vi(xi) < vi(xh). Likewise, we say that an agent i
EFX-envies (resp. EFX0-envies) an agent h if neither conditions (i) nor (ii) of (2) (resp. (3)) hold
for i with respect to h.

Definition 2. (Envy Graph.) The envy-graph of an allocation x is a directed graph Gx = (N,E)
where each agent is a node and there exists an edge from agent i to agent h if and only if vi(xi) <
vi(xh), i.e. if and only if i envies h. The top envy-graph G∗

x
= (N,E) is a directed graph where

there is an edge from i ∈ N to h ∈ N if i envies h and additionally h ∈ argmaxi′ 6=ivi(xi′).
A source in Gx is an agent with in-degree zero, i.e., an agent who nobody envies. A sink in

Gx is an agent with out-degree zero, i.e., and agent who envies nobody. Notice that if there exists
a (directed) cycle C in the envy-graph for some allocation, then we can reallocate bundles among
the agents in C in the reverse order and all agents in C receive a bundle that they prefer over their
current bundle, while the utility of agents outside of C does not change. This procedure is called
envy-cycle elimination and results in a Pareto-improvement.

Definition 3. (Proportionality and its relaxations.) An allocation x is said to be:

1. Proportional if for all agents i ∈ N , we have vi(xi) ≥ Propi, where Propi =
1
n · vi(M) is the

proportional share of an agent.

2. Proportional up to the maximin good (PropM) for a goods instance if, for all i ∈ N :

vi(xi) + di(x) ≥ Propi,

where di(x) = maxi′ 6=iminj∈xi′

vij>0
vij . The corresponding item maximizing the expression of

di(x) is called the maximin good of i for x.

3. PropM0 for a goods instance if for all i ∈ N :

vi(xi) + di(x) ≥ Propi,

where di(x) = maxi′ 6=i minj∈xi′

vij≥0

vij. Note that PropM0 is a more demanding condition than

PropM, and it is easy to see that any PropM0 allocation is PropM, but not vice versa.

4. Proportional up to any bad (PropX) for a bads instance if for all i ∈ N and ∀c ∈ xi:

vi(xi − c) ≥ Propi.

One can analogously define PropX for goods, however PropX allocations of goods need not
always exist. We include an example due to Aziz, Moulin and Sandomirskiy [26, 5] in Ap-
pendix A.1. For the mixed manna setting, we combine the definitions above:

6

5. Proportional up to the maximin good or any bad (PropMX) for a MiXed manna instance, if
for all i ∈ N either:

(i) vi(xi) + di(x) ≥ Propi, where di(x) = max
i′ 6=i

min
j∈xi′

vij>0

vij, or

(ii) ∀c ∈ xi such that vic < 0, vi(xi − c) ≥ Propi.

6. PropMX0 for a MiXed manna instance, if for all i ∈ N either:

(i) vi(xi) + di(x) ≥ Propi, where di(x) = max
i′ 6=i

min
j∈xi′

vij≥0

vij, or

(ii) ∀c ∈ xi such that vic < 0, vi(xi − c) ≥ Propi. As before, any PropMX0 allocation is
PropMX, but not vice-versa.

Relating the fairness properties. First notice that for any mixed manna instance, every agent
i that has vi(M) ≤ 0 can be trivially PropMX0 satisfied by allocating no items to them. Therefore,
for the remainder of the paper, we assume that vi(M) > 0 for all agents.

It is easy to see that in the case of an instance with bads only, EFX (resp.EFX0) implies
PropX([24], Lemma 3.2). We extend this observation and show that this implication continues to
hold in the mixed manna setting.

Lemma 1. Consider a mixed manna instance and let x be an EFX allocation for that instance.
Then x is also PropMX. Further, if x is EFX0, then x is also PropMX0.

Proof. Since x is EFX, we know that for all i, h ∈ N , either

vi(xi) ≥ vi(xh)− vig ∀g ∈ xh s.t. vig > 0, (1)

or
vi(xi)− vic ≥ vi(xh) ∀c ∈ xi s.t. vic < 0. (2)

Fix an agent i ∈ N and let N+ ⊆ N denote the set of agents that i does not envy up to any
item because of (1), and N− ⊆ N denote the set of agents that i does not envy up to any item
because of (2). If, in (1), we select g ∈ xh to be the minimum-value pure good of xh according to
i’s valuation function, and then select the maximum such good over all h ∈ N+, we get that this
item is the maximin good for agent i, and thus, for all h ∈ N+

vi(xi) + di(x) ≥ vi(xh). (3)

We sum up (3) for all h ∈ N+ and (2) for all h ∈ N−, making sure the case of h = i is counted only
once, and then sum both inequalities together, and we get that, for all c ∈ xi such that vic < 0,

n · vi(xi) + |N
+| · di(x)− |N

−| · vic ≥ vi(M) ⇐⇒

vi(xi) +
|N+|

n
· di(x) −

|N−|

n
· vic ≥

1

n
· vi(M) = Propi.

Notice that, for any c ∈ xi such that vic < 0, |N+|
n · di(x) −

|N−|
n · vic is a convex combination of

di(x) and −vic, and thus |N+|
n · di(x)−

|N−|
n · vic ≤ max{di(x),−vic}. Therefore, either

vi(xi) + di(x) ≥ Propi,

7

or, for all c ∈ xi such that vic < 0,
vi(xi − c) ≥ Propi,

thus showing that x is PropMX.
Finally, if x is EFX0, all inequalities still hold if we let di(x) = maxi′ 6=iminj∈xi′

vij≥0

vij , and thus it

follows that x is also PropMX0.

The following lemma shows allocating items to agents who value them at the highest possible
value results in a PO allocation. For any j ∈M , let ηj = maxi∈N vij.

Lemma 2. Let x be an allocation in which every item j ∈M is allocated to an agent i s.t. vij = ηj .
Then x is PO and maximizes the social welfare.

Proof. The social welfare of x is SW(x) =
∑

i∈N

∑

j∈xi
vij =

∑

i∈N

∑

j∈xi
ηj =

∑

j∈M ηj. Further,
for any allocation y, SW(y) =

∑

i∈N

∑

j∈yi
vij ≤

∑

i∈N

∑

j∈yi
ηj ≤

∑

j∈M ηj , since vij ≤ ηj for
every i, j. Hence, x maximizes the social welfare.

If x is not PO, then there must be an allocation y which dominates x, i.e., vi(yi) ≥ vi(xi)
for every i ∈ N and vh(yh) > vh(xh) for some h ∈ N . Then SW(y) > SW(x). This gives
∑

j∈M ′ ηj ≥ SW(y) > SW(x) =
∑

j∈M ηj , which is a contradiction. Hence x is PO.

3 The Restricted Mixed Goods Setting

In this section, we investigate whether the fairness notions of EFX, EFX0, PropMX or PropMX0 can
be achieved in conjunction with the efficiency notion of Pareto-optimality (PO) in the mixed manna
setting with restricted mixed goods. We first note that PropMX0 and PO are not compatible by
presenting an instance in Appendix A.2 for which no allocation is PropMX0+PO, even when no
item is a bad. This also shows that EFX0+PO allocations needn’t exist. Thus, we consider the
existence of PropMX+PO and EFX+PO allocations.

3.1 EFX+PO for Restricted Goods

We begin by showing that we can obtain an EFX+PO allocation for the setting of pure goods with
restricted valuations. In such an instance (N,M,V), for every j ∈ M , there exists a vj > 0 s.t.
vij ∈ {0, vj} for every i ∈ N .

Theorem 1. Given a fair division instance of pure goods with restricted valuations, an allocation
that is EFX, PO and maximizes the utilitarian social welfare can be computed in polynomial-time.

Proof. We prove this theorem by showing that Algorithm 1, which is based on the EnvyCycle
procedure, computes an EFX+PO allocation for this setting.

First note that Algorithm 1 always allocates a good j to an agent i who values it at the highest,
i.e., vij = vj. Hence by Lemma 2, the allocation is PO at every step of the algorithm.

We now show that the partial allocation x is EFX at every step of Algorithm 1. Initially, x is
an empty allocation (Line 2) and hence is trivially EFX. Inductively, let x be an EFX allocation of
goods 1 through j − 1, for some j ∈ [m], and let Gx be the envy-graph defined by x. To maintain
PO, we must allocate item j to an agent i s.t. vij > 0. Among the set of such agents Nj for an
item j (Line 5), we allocate j to an agent i who is a source in the sub-graph Gj of Gx induced by
Nj . We argue below that such an agent always exists by showing that Gx is acyclic. Intuitively,
i is the right choice because giving the good j to an agent h ∈ Nj who is already envied by some
agent k can cause k to envy h even after the removal of j.

8

Algorithm 1 EFX+PO For Restricted Goods

Input: Restricted Goods Instance (N,M,V)
Output: Allocation x

1: Order and relabel the goods so that v1 ≥ v2 ≥ · · · ≥ vm > 0
2: x← (∅, . . . , ∅) ⊲ Initial empty allocation
3: while M 6= ∅ do
4: Pick j ∈M
5: Nj ← {i ∈ N : vij = vj} ⊲ Agents who value j positively
6: Let Gx be the envy-graph defined by x ⊲ Def. 2
7: Let Gj = Gx[Nj] be the sub-graph of Gx induced by Nj

8: Let i ∈ Nj be a source in Gj ⊲ Def. 2
9: xi ← xi + j ⊲ Assign j to i

10: M ←M − j

11: return x

More formally, we show that the allocation x′ is EFX, where x′
i = xi + j and x′

h = xh for every
h 6= i. Note that any violation of the EFX condition in x′ must involve the agent i. Since x is
EFX, we see that for any agent h 6= i, vi(x

′
i) = vi(xi) + vij ≥ vi(xh − g) = vi(x

′
h − g) for every

g ∈ xh with vig > 0. Thus i does not EFX-envy any other agent in x′.
Consider h ∈ Nj . Since i is a source in Gj , h does not envy i. Hence vj(xh) ≥ vh(xi). Then

for any g ∈ x′
i with vhg > 0, we have vh(x

′
i − g) = vh(xi) + vhj − vhg ≤ vh(xi) = vh(x

′
h), since x is

EFX and we ordered the goods so that vhg ≥ vhj . Thus, h does not EFX-envy i in x′.
Finally, consider h /∈ Nj . Then vhj = 0. Thus vh(x

′
h) = vh(xh) ≥ vh(xi − g) = vh(x

′
i − g) for

any g ∈ x′
i s.t. vhg > 0, since x is EFX. This shows that h does not EFX-envy i in x′.

In conclusion, x′ is EFX. Inductively, this shows that the algorithm always maintains EFX.
Further, since a good is given to an agent who values it positively, the allocation must be PO
throughout the execution of the algorithm. We now show that the envy graph Gx corresponding
to a partial allocation x is acyclic, ensuring the presence of a source agent (Line 8). Assume for the
sake of contradiction, there is a cycle C in Gx. Then reallocating bundles along the cycle strictly
improves the utility of every agent in the cycle, and does not change the utility of any agent not
in the cycle. Hence, this is a Pareto-improvement over x. This contradicts the fact that x is PO.
Therefore, Gx cannot have cycles.

3.2 EFX+PO for Restricted Mixed Goods and Identical Bads

We now use the result of the preceding section for computing EFX+PO allocations in the mixed
setting comprising of restricted mixed goods and identical bads. Recall that for such instances:

1. for every j ∈M+, there exists vj ∈ Z+ s.t. for every i ∈ N with vij > 0, it holds that vij = vj .

2. for every j ∈M−, there exists vj ∈ Z− s.t. for every i ∈ N , it holds that vij = vj .

We show that:

Theorem 2. Given a fair division instance with restricted mixed goods and identical bads, an
allocation that is EFX, PropMX, PO and maximizes the social welfare be computed in polynomial-
time.

9

Algorithm 2 EFX+PO for Restricted Mixed Goods & Id. Bads

Input: Instance (N,M,V) with restricted mixed goods and identical bads
Output: Allocation x

1: Partition M into M+,M0,M− ⊲ See Sec. 2
Phase 1: Allocating M+ .

2: Let V ′ be given by

v′ij =

{

vij , if vij > 0

0, if vij ≤ 0,

for every i ∈ N and j ∈M+

3: x← Algorithm 1(N,M+, V ′) ⊲ Allocate M+ by running Algorithm 1 for items in M+ with
modified values
Phase 2: Allocating M0 .

4: while M0 6= ∅ do
5: Pick j ∈M0

6: Let i ∈ N be such that vij = 0
7: xi ← xi + j ⊲ Assign j to i
8: M0 ←M0 − j

Phase 3: Allocating M− .
9: Order bads in M− according to ≺ s.t. j ≺ j′ iff −vj ≥ −vj′

10: while M− 6= ∅ do
11: Pick smallest j ∈M− according to ≺
12: Let Gx be the envy-graph defined by x ⊲ Def. 2
13: Let i be a sink in Gx ⊲ Def. 2
14: xi ← xi + j ⊲ Assign j to i
15: M− ←M− − j

16: return x

We prove Theorem 2 by showing that our Algorithm 2 computes an EFX+PO allocation for
the given setting.

We divide the execution of the algorithm into three phases: Phase 1 allocates items in M+

(Lines 2-3), followed by Phase 2 for allocating items in M0 (Lines 4-9), and finally Phase 3 for
allocating items in M− (Lines 10-16). We show that at each iteration of the algorithm, the partial
allocation of items allocated so far is always EFX+PO.

We first describe Phase 1. Given the instance I = (N,M+, V), we consider the instance
I ′ = (N,M+, V ′) with values modified by changing the negative values to zero (see Line 2). Then,
I ′ is an instance of goods with restricted additive valuations.

Using Algorithm 1, we obtain an allocation x in Line 3 which is EFX+PO for the instance I ′.
We show that x is also EFX for I, thus showing that:

Lemma 3. The allocation at the end of Phase 1 is EFX+PO.

Proof. As discussed above, the allocation x at the end of Phase 1 is EFX+PO for the instance
I ′ = (N,M+, V ′) with modified values. We now show that x is EFX for the original instance
I = (N,M+, V) as well. To this end, observe that since x is PO for I ′, no agent i has an item j
which she values at 0. Otherwise transferring j to an agent h who values j positively is a Pareto-
improvement; such an agent h exists because j ∈ M+. Thus, j ∈ xi implies v′ij > 0. However, by

10

construction this implies v′ij = vij (see Line 2). Thus,

v′i(xi) = vi(xi). (4)

Fix a pair of agents i, h. For any j /∈ xi, vij ≤ v′ij by construction. Hence:

vi(xh − g) ≤ v′i(xh − g), (5)

for any g ∈ xh with vig > 0. Since x′ is EFX for I ′, v′i(xi) ≥ v′i(xh − g). Together with (4) and (5),
we obtain:

vi(xi) ≥ vi(xh − g),

for any g ∈ xh with vig > 0. This shows that x is EFX for I at the end of Phase 1. Since each item
j is allocated to an agent i who values it at the highest (vij = vj), Lemma 2 shows x is PO.

Next, we describe Phase 2 which allocates items in M0. To ensure that the allocation is PO,
we must allocate each item j ∈M0 to an agent i s.t. vij = 0. Intuitively, since the EFX condition
requires that the envy between agents disappear after the removal of an item of positive value,
items of M0 will not cause any new EFX-envy.

Lemma 4. The allocation at the end of Phase 2 is EFX+PO.

Proof. Suppose x is a partial EFX allocation prior to allocating an item j ∈ M0. Suppose we
allocate j to an agent i with vij = 0, to obtain an allocation x′. Since xh = x′

h for every h 6= i,
any possible violation of the EFX condition in x′ must involve agent i. First, since i does not get
a bad, the utility of i does not change, and neither does the utility of any other agent. Hence
i will not EFX-envy any other agent in x′. Now since x is EFX, we have for any other h 6= i,
vh(x

′
h) = vh(xh) ≥ vh(xi − g) ≥ vh(x

′
i − g), for any g ∈ x′

i with vhg > 0. Hence x′ is EFX.
Finally, Lemma 2 once again shows that the allocation at the end of Phase 2 is PO, since any

j ∈M+ ∪M0 is allocated to an agent i who values it at the highest-possible value.

We finally describe Phase 3 which allocates items of M−. Since the bads form an identical
instance, i.e. a given bad j has the same value vj < 0 for all agents, we first sort the items in
non-increasing order of disutility, i.e. we order the bads using ≺ where j ≺ j′ iff −vij ≥ −vij′.

Let x be a partial EFX+PO allocation items in M+,M0 and some items of M−. We must now
decide how to allocate the next bad j ∈ M− in the order defined by ≺. For this, we consider the
envy-graph G = (N,E) (see Def. 2). We argue that the way we allocate items ensures that G will
have at least one sink agent, i.e., an agent who does not envy any agent. Then, we give j to a sink
i (Line 14). Intuitively, this is the right choice, as i is already well-off in terms of value as i does
not envy any other agent. Hence we should give the bad to i instead of any other agent who has
lesser value. We now formally show that:

Lemma 5. The allocation at the end of Phase 3 is EFX+PO.

Proof. Suppose x is a partial EFX allocation prior to allocating an item j ∈ M−. Suppose we
allocate j to a sink agent i in the envy-graph Gx to obtain an allocation x′. We will show later that
G is acyclic, ensuring such a sink-agent exists. For sake of contradiction assume x′ is not EFX.
Since xh = x′

h for every h 6= i, any possible violation of the EFX condition must involve agent i.
We claim that i is EFX towards any other agent h 6= i in x′. To see this, note that for any bad
j′ ∈ x′

i, vi(x
′
i − j′) = vi(xi) + vij − vij′ ≥ vi(xi) since j′ < j. Now since i is a sink, vi(xi) ≥ vi(xh),

thus implying that vi(x
′
i − j′) ≥ vi(xh) for every bad j′ ∈ x′

i and any agent h 6= i, showing that i
does not EFX-envy any other agent.

11

Now suppose some agent h 6= i EFX-envies i in x′. Since x was EFX, either (1) vh(xh) ≥
vh(xi− g) for every g ∈ xi with vhg > 0, or (2) vh(xh− j′) ≥ vh(xi) for every j′ ∈ xh with vhj′ < 0.
If Condition (1) holds, then we also obtain vh(x

′
h) = vh(xh) ≥ vh(x

′
i − g) for every g ∈ xi with

vhg > 0, since x′
h = xh and x′

i = xi + j but vhj ≤ 0. Thus h continues to be EFX towards i in x′.
If Condition (2) holds, then, using vhj ≤ 0 we obtain vh(x

′
h − j′) = vh(xh − j′) ≥ vh(xi) ≥ vh(x

′
i)

for every j′ ∈ x′
h with vhj′ < 0, once again showing that h does not EFX-envy i in x′.

Thus x′ is EFX. Further, note that any item is allocated to an agent who values it at the
highest. By Lemma 2, the allocation remains PO throughout the execution of the algorithm. As
argued before, if the envy-graph Gx corresponding to some partial allocation x has a cycle, then
reallocating along the cycle gives a Pareto-improvement. Since x is always PO, this means that Gx

is always acyclic, ensuring the presence of sink agents (Line 19). Thus, the allocation at the end of
Phase 3 is EFX+PO.

In conclusion, Algorithm 2 returns and EFX+PO allocation for the restricted mixed goods and
identical bads setting. Note that any item is allocated to an agent who values it at the highest,
hence the allocation also maximizes the social welfare by Lemma 2. Finally, Lemma 1 implies that
any EFX allocation is PropMX. This proves Theorem 2.

3.3 EFX0+PO for Binary Mixed Goods and Identical Bads

Next, we show that for the special case of instances with binary mixed goods and identical bads,
an EFX0+PO allocation can be computed in polynomial time.

Theorem 3. Given a fair division instance with binary mixed goods and identical bads, an allocation
that is EFX0, PropMX0, PO and maximizes the social welfare be computed in polynomial-time.

Recall that in this setting, there exists an a > 0 such that for all j ∈M+, if vij > 0, then vij = a.
In the restricted mixed goods setting, an EFX0+PO allocation need not even exist (Appendix A.2).
Further, even for the binary mixed goods case, Algorithm 2 cannot provide EFX0 guarantee because
it may assign a mixed good j to an agent i, and there could be another agent h that envies i but
vhj = 0, thus causing h to EFX0-envy i.

We circumvent this issue by using a different approach than Algorithm 2 for allocating M+ in
Phase 1 and M0 in Phase 2. Specifically, we modify the values of items in M+ as before to convert
it into a binary goods instance I ′, and then use algorithm Alg-Binary of [3]. This algorithm
is adapted from [16, 10], and computes a Nash-welfare maximizing allocation of I ′ which is also
EFX0+PO ([3], Theorem 3.1). Afterwards, we adapt Phase 2 of Algorithm 2, paying extra care to
which agents we allocate the items in M0. Finally, Phase 3 of Algorithm 2 remains the same.

We prove Theorem 3 by showing that Algorithm 3 computes an EFX0+PO for the given setting.
We first describe Phase 1 of Algorithm 3. Given the instance I = (N,M+, V), we consider the
instance I ′ = (N,M+, V ′) with modified values, as in the restricted setting. Notice that I ′ is an
instance with binary values. For such instances, an allocation which maximizes the Nash welfare
can be computed in polynomial-time [16, 10], and further a Nash welfare maximizing allocation
which is also EFX0+PO can be computed in polynomial-time [3] via the procedure Alg-Binary

of [3] (which we rename here to BinaryGoods to avoid confusion). Using this, we obtain an
allocation x in Line 3 which is EFX0+PO for the instance I ′. Like in Lemma 3, we show that x is
also EFX0 for I.

Lemma 6. The allocation at the end of Phase 1 is EFX0+PO.

12

Algorithm 3 EFX0+PO for Binary Mixed Goods & Id. Bads

Input: Instance (N,M,V) with binary mixed goods and identical bads
Output: Allocation x

1: Partition M into M+,M0,M− ⊲ See Sec.2
Phase 1: Allocating M+ .

2: Let V ′ be given by

v′ij =

{

vij , if vij > 0

0, if vij ≤ 0,

for every i ∈ N and j ∈M+

3: x← BinaryGoods(N,M+, V ′) ⊲ Allocate M+ via BinaryGoods for items in M+ with
modified values
Phase 2: Allocating M0 .

4: while M0 6= ∅ do
5: Pick j ∈M0

6: Let Nj := {i ∈ N | vij = 0}
7: Let Gx be the envy-graph defined by x ⊲ Def. 2
8: Let Gj = Gx[Nj] be the sub-graph of Gx induced by Nj

9: Let i ∈ Nj be a source in Gj ⊲ Def. 2
10: xi ← xi + j ⊲ Assign j to i M0 ←M0 − j

Phase 3: Allocating M− .
11: Order bads in M− according to ≺ s.t. j ≺ j′ iff −vj ≥ −vj′
12: while M− 6= ∅ do
13: Pick smallest j ∈M− according to ≺
14: Let Gx be the envy-graph defined by x ⊲ Def. 2
15: Let i be a sink in G ⊲ Def. 2
16: xi ← xi + j ⊲ Assign j to i M− ←M− − j

17: return x

Proof. As discussed above, we know that the allocation x at the end of Phase 1 is EFX0+PO for
the instance I ′ = (N,M+, V ′) with modified values. We now show that x is EFX0 for the original
instance I = (N,M+, V) as well. To this end, observe that, since x is PO for I ′, no agent i has
an item j which she values at 0. Otherwise transferring j to an agent h who values j positively
is a Pareto-improvement; such an agent h exists because j ∈ M+. Thus, j ∈ xi implies v′ij > 0.
However, by construction this implies vij > 0 (see Line 2). Hence, for any agent i and item j, if
j ∈ xi, then vij > 0, i.e., every agent gets items that are goods for them. Thus,

v′i(xi) = vi(xi). (6)

Fix a pair of agents i, h ∈ N . For any j /∈ xi, vij ≤ v′ij by construction. Hence:

vi(xh − g) ≤ v′i(xh − g), (7)

for any g ∈ xh. Since x′ is EFX0 for I ′, v′i(xi) ≥ v′i(xh − g). Together with (6) and (7), we obtain:

vi(xi) ≥ vi(xh − g),

for any g ∈ xh. This shows that x is EFX0 for I at the end of Phase 1. Further each item j is
allocated to some agent i who values it at the highest-possible value, thus showing that x is PO.

13

Next, we describe Phase 2 which allocates items in M0. The only difference between Algo-
rithms 2 and 3 in this Phase is that, while in the former we allocated every item j ∈ M0 to an
arbitrary agent which has value 0 for j, in the latter, out of all agents i which have vij = 0, we
allocate j to a source of the induced subgraph of the envy-graph. This ensures that no other agent
h who envies i has vhj = 0, which ensures the EFX0 condition is not violated for h. We prove:

Lemma 7. The allocation at the end of Phase 2 is EFX0+PO.

Proof. Consider the partial allocation x right before we allocate an item j ∈M0, and assume that
it is EFX0+PO. Suppose we allocate j to i. By the algorithm’s description, we know that i is a
source in Gj . First, since i’s valuation for her bundle does not change, and no other agent’s bundle
changes, i continues to satisfy the EFX0 condition. Next, we can partition N − i into two sets,
the set NE

−i of agents who envy i and the set NNE
−i of agents who do not envy i. For every agent

h ∈ NNE
−i , they continue to not envy i even after we allocate j, since vh(xi) can not increase, while

vh(xh) remains the same. Therefore, all h ∈ NNE
−i continue to satisfy the EFX0 condition. Finally,

since i is a source in Gj , we know that every agent h ∈ NE
−i has vhj < 0, else they would have an

edge to i and i would not be a source. Therefore, j is not considered among the items g ∈ xi for
which vhg ≥ 0, and thus all h ∈ NE

−i continue to satisfy the EFX0 condition.

Phase 3 of Algorithm 3 is exactly the same as Phase 3 of Algorithm 2 and, since allocating pure
bads does not affect items for which agents have value 0, the allocation is EFX0+PO after Phase
3, due to Lemma 5.

In conclusion, for instances with binary mixed goods and identical bads, Algorithm 3 computes
an EFX0+PO allocation in polynomial-time. Algorithm 3 allocates an item to an agent who values
it at the highest, hence the allocation also maximizes the social welfare by Lemma 2. Finally,
Lemma 1 implies that any EFX0 allocation is PropMX0. This proves Theorem 3.

4 PropMX0 for Separable Instances

In this section, we consider separable instances, in which all agents agree on the set of goods and
bads. In other words, we can partition M into M≥0 and M− such that vij ≥ 0 for all j ∈M≥0 and
vij < 0 for all j ∈M≥0, for every agent i ∈ N . We show that:

Theorem 4. Given a separable fair division instance (N,M,V), a PropMX0 allocation can be
computed in polynomial-time.

We prove this theorem by presenting an algorithm which returns a PropMX0 allocation for
this instance, combining ideas from previously known algorithms for instances with goods only [6]
and pure bads instances [24].

The idea behind the algorithm is to first obtain a PropMX0 allocation with respect to M≥0 and
then start allocating M−. We show how this allocation of bads can be performed while maintaining
PropMX0 in the case of an IDO instance, in which all agents have the same ordinal preference for
all bads in M−. Recall that in an IDO instance, there exists an ordering of the bads in M− such
that for all agents i ∈ N , vi1 ≤ vi2 ≤ · · · ≤ vim− , where m− = |M−|. Notice that in an IDO
instance, the cardinal preferences can be significantly different across different agents. Afterwards,
in Section 4.2, we present a reduction from [24], from an instance which is IDO for bads to a general
instance for bads, and show that it holds even in the mixed manna setting. This allows us to obtain
a PropMX0 allocation for any separable instance.

14

4.1 Separable Instances with IDO Bads

Our algorithm first uses the algorithm of Baklanov et al. [6] for goods to obtain a PropM0 allocation
with respect to M≥0. Note that this allocation will also trivially be PropMX0, since we have only
assigned items from M≥0. Also, Baklanov et al. do not differentiate between PropM and PropM0,
and thus mention their result as giving a PropM allocation, but in fact their allocation satisfies the
stronger guarantee of being PropM0. Afterwards, we run the envy-cycle elimination algorithm of
Li et al. [24] for pure bads, and show that it obtains an allocation that is PropMX0 with respect
to M .

For the remainder of this section, we use Goods to refer to Algorithm 1 of [6], and we assume
that the bads in M− are ordered such that vi1 ≤ vi2 ≤ · · · ≤ vim− (recall that vij < 0 for all
i ∈ N, j ∈ M−, i.e. the bads are ordered from most painful to least painful). Furthermore, given
any allocation x of a subset of items, we create the top-envy graph of x, G∗

x
. Consider a cycle C

of G∗
x
. We call a reallocation according to C a new allocation xC where we reallocate the bundles

of C backwards along the cycle.

Algorithm 4 Separable Instances with IDO Bads

Input: Separable instance (N,M,V)
Output: Allocation x

1: M≥0 ← {j ∈M : ∀i ∈ N, vij ≥ 0}
2: M− ←M \M≥0

3: x≥0 ← Goods(M≥0) ⊲ PropM0 Algorithm from [6]
4: x← x≥0

5: for j ← 1 to m− do
6: while ∄ any sinks in G∗

x
do

7: Let C be a cycle in G∗
x

8: Reallocate bundles according to C ⊲ See text

9: Let i be a sink in G∗
x

10: xi ← xi + j

11: return x

Since Goods runs in polynomial time, Algorithm 4 runs in polynomial time as well. The
following lemma about allocation x≥0 (Line 3) follows directly from [6].

Lemma 8. For every agent i ∈ N ,

vi(x
≥0
i) + d≥0

i (x≥0) ≥
1

n
· vi(M

≥0),

where d≥0
i (x≥0) = maxi′ 6=i min

j∈x≥0

i′
vij .

Next, we show that Algorithm 4 maintains PropMX0 with respect to the currently allocated
set of items after allocating a pure bad.

Lemma 9. Let M−
≤j = {1, 2, . . . , j} ⊆ M− denote the set of bads allocated after the j-th step of

the For-Loop in Lines 5− 12. Then, after the j-th step, for all agents i ∈ N , either

vi(xi) + di(x) ≥
1

n
· vi

(

M≥0 ∪M−
≤j

)

,

15

where di(x) = maxi′ 6=iminj∈xi′

vij≥0

vij , or ∀c ∈ xi \ x
≥0
i ,

vi(xi − c) ≥
1

n
· vi

(

M≥0 ∪M−
≤j

)

.

Proof. We prove the lemma via induction on j. Notice that before the For-Loop in Lines 5 − 12
of Algorithm 4, the lemma holds, because of Lemma 8. Assume that the lemma holds right after
the (j − 1)-th step of the For-Loop, and consider the allocation x immediately after the j-th step

of the For-Loop. Let i be the agent that received bad j, and let x
(b)
i denote i’s bundle right before

step j.
First, consider an agent i′ 6= i. Notice that if xi′ did not change during the j-th step of the

For-Loop, then the lemma holds for i′, by our induction hypothesis, as the left-hand side of both
inequalities remained the same, while the right-hand side decreased. Furthermore, the only way xi′

could have changed during the j-th step of the For-Loop is via a top-envy cycle reallocation in G∗
x
.

In this case, i′ received her bust bundle among all bundles of x, sinceG∗
x
is the top-envy graph, which

implies that i′ does not envy any other agent after the j-th step, thus vi′(xh) ≥
1
n ·vi′

(

M≥0 ∪M−
≤j

)

and i′ satisfies the lemma.
Next, consider agent i. Since i was a sink in the top-envy graph G∗

x
prior to step j of the

For-Loop, we know that i did not envy any other agent, and thus vi(xi) ≥
1
n · vi

(

M≥0 ∪M−
≤j−1

)

.

This implies that, for every bad c ∈
(

x
(b)
i \ x

≥0
i

)

+ j, we have

vi

(

x
(b)
i + j − c

)

= vi

(

x
(b)
i + j

)

− vic

= vi

(

x
(b)
i

)

+ vij − vic

≥
1

n
· vi

(

M≥0 ∪M−
≤j−1

)

+ vij − vic

=
1

n
· vi

(

M≥0 ∪M−
≤j

)

−
vij
n

+ vij − vic

≥
1

n
· vi

(

M≥0 ∪M−
≤j

)

,

where the last inequality follows from the fact that vic ≤ vij ≤
(

1− 1
n

)

vij , since the instance is
IDO for bads and vik < 0 for all k ∈M−. Therefore, i satisfies the lemma after the j-th step.

4.2 General Separable Instances

Consider now a general separable instance. Our idea is to again use the Goods algorithm of [6],
and then convert the subproblem of allocating M− into an IDO instance via a reduction. This
reduction appears in Li et al. [24], and is commonly used in designing approximation algorithms
for MMS fair allocations [13, 8, 22]. We show here that it can be used in the mixed manna setting
as well.

Lemma 10. If there exists a polynomial time algorithm that given any separable mixed manna
instance with IDO bads computes a PropMX (resp. PropMX0) allocation, then there exists a poly-
nomial time algorithm that given any separable mixed manna instance (with general bads) computes
a PropMX (resp. PropMX0) allocation.

Proof. Given any separable mixed manna instance I = (N,M,V), we start by creating I ′ =
(N,M,V ′), a new separable mixed manna instance with IDO bads. V ′ is defined as follows. For

16

all items that are not pure bads, the valuation stays the same for all agents, i.e. v′ij = vij for all
j /∈ M−. Without loss of generality, let M− = {1, 2, . . . ,m−}. Next, let σi(j) ∈ M be the j-th
lowest-valued pure bad under value function vi (i.e. σi(1) is the “worst” bad for agent i), and let
v′ij = viσi(j). It follows easily that instance I ′ has IDO bads, with v′i1 ≤ v′i2 ≤ . . . ≤ v′im− .

Afterwards, we run the algorithm for IDO instances on instance I ′, and get a PropMX (resp.
PropMX0) allocation x′ with respect to I ′. By definition, for every agent i ∈ N , we have either

v′i(x
′
i) + di(x

′) ≥
1

n
· v′i(M),

where di(x
′) = maxi′ 6=i minj∈x′

i′

v′
ij
>0

v′ij (resp. di(x
′) =

maxi′ 6=iminj∈x′
i′

v′
ij
≥0

v′ij), or ∀c ∈ x′
i ∩M−,

v′i(x
′
i − c) ≥

1

n
· v′i(M).

Next, we construct a PropMX (resp. PropMX0) allocation for instance I, using x′. For every item
j /∈ M−, assign it to the agent that gets it in x′, i.e. if j ∈ x′

i, then assign j to xi. For every
pure bad j ∈ M−, in sequential order from j = m− to 1, let ij denote the agent that gets bad j
in x′. We let ij select her favourite unallocated bad, c = argmax1≤ℓ≤j viℓ and assign it to xi. We
show that there is a bijection fi : xi → x′

i such that for any bad e ∈ xi, we have vie ≥ v′ij , where
j = fi(e). Recall that v

′
ij ≥ v′iℓ for all ℓ ≤ j, and that j is the j-th lowest valued pure bad for agent

i. Notice that there must exist an unallocated bad e′ with value vie′ ≥ v′ij; if σi(j) is unallocated
at the beginning of step j, then e′ = σi(j). If σi(j) was allocated, by the pigeonhole principle and
because at most j − 1 bads have been allocated at the beginning of step j, there must exist an
unallocated bad σi(k), where k < j, and we know that viσi(k) ≥ viσi(j). Thus, there must exist
an unallocated bad e′ with value vie′ ≥ v′ij . Since e has maximum value for i among unallocated
bads under value function vi, we have vie ≥ v′ij . Note that this process also ensures |x′

i| = |xi|,
v′i(M) = vi(M) and di(x

′) = di(x) for all agents i ∈ N .
For every agent i ∈ N , there are two cases.

• Assume i is PropMX (resp. PropMX0) satisfied in x′ because

v′i(x
′
i) + di(x

′) ≥
1

n
· v′i(M).

Notice that x′ and x are identical with respect to items that are not pure bads, and also,
vi(xi ∩ M−) ≥ v′i(x

′
i ∩ M−), which implies vi(xi) ≥ v′i(x

′
i). Since v′i(M) = vi(M) and

di(x
′) = di(x), we get:

vi(xi) + di(x) ≥
1

n
· vi(M),

and i is PropMX (resp. PropMX0) satisfied in x.

• Assume now that i is PropMX (resp. PropMX0) satisfied in x′ because ∀c ∈ x′
i ∩M−,

v′i(x
′
i − c) ≥

1

n
· v′i(M).

We know that ∀c ∈ xi ∩M−, vic ≥ v′ifi(c). Thus, for every c ∈ xi ∩M−:

vi(xi − c) =
∑

ℓ∈xi

ℓ 6=c

viℓ ≥
∑

ℓ′∈x′
i

ℓ′ 6=fi(c)

v′iℓ′ = vi(x
′ − fi(c)) ≥

1

n
· vi(M),

17

and i is PropMX (resp. PropMX0) satisfied in x.

We conclude that x is a PropMX (resp. PropMX0) allocation with respect to I.

Lemmas 9 and 10 together prove Theorem 4.

5 Revisiting Restricted Mixed Goods

In this section, we revisit the restricted mixed good setting of Section 3 and use the reduction of
Lemma 10.

5.1 EFX for Restricted Mixed Goods with IDO Bads

We show that we can obtain EFX allocations for the restricted mixed goods setting with IDO bads.

Theorem 5. Given a fair division instance of restricted mixed goods and IDO bads, an EFX al-
location can be computed in polynomial-time. Furthermore, for the case of binary mixed goods, a
EFX0 allocation can be computed in polynomial-time.

The algorithm is almost identical to Algorithm 2, with the only Phase 3 changed to allocate the
IDO bads in the order 1 to m−, where vi1 ≤ vi2 ≤ . . . vim− , for every i ∈ N , like in Algorithm 4.
We replace Phase 3 of Algorithm 2 with the following Algorithm 5.

Algorithm 5 EFX for Restricted Mixed Goods & IDO Bads

Input: Instance (N,M,V) with binary mixed goods and identical bads
Output: Allocation x

Phase 3: Allocating M− .
1: Order bads in M− in IDO order vi1 ≤ vi2 ≤ . . . ≤ vim−

2: while M− 6= ∅ do
3: Pick smallest j ∈M− according to ≺
4: Let G∗

x
= (N,E) be the top-envy-graph defined by x ⊲ *Def. 2

5: while ∄ any sinks in G∗
x
do

6: Let C be a cycle in G∗
x

7: Reallocate bundles according to C ⊲ See text

8: Let i be a sink in G∗
x

⊲ Def. 2
9: xi ← xi + j ⊲ *Assign j to i

10: M− ←M− − j

11: return x

Proof of Theorem 5. Suppose x is a partial EFX allocation prior to allocating an item j ∈ M−.
Suppose we allocate j to a sink agent i in the top-envy-graph G∗

x
to obtain an allocation x′. We

will show later that resolving cycles in G∗
x
preserves EFX. For sake of contradiction assume x′ is

not EFX. Since xh = x′
h for every h 6= i, any possible violation of the EFX condition must involve

agent i. We claim that i is EFX towards any other agent h 6= i in x′. To see this, note that for
any bad j′ ∈ x′

i, vi(x
′
i − j′) = vi(xi) + vij − vij′ ≥ vi(xi) since j′ < j. Now since i is a sink,

vi(xi) ≥ vi(xh), thus implying that vi(x
′
i − j′) ≥ vi(xh) for every bad j′ ∈ x′

i and any agent h 6= i,
showing that i does not EFX-envy any other agent.

18

Now suppose some agent h 6= i EFX-envies i in x′. Since x was EFX, either (1) vh(xh) ≥
vh(xi− g) for every g ∈ xi with vhg > 0, or (2) vh(xh− j′) ≥ vh(xi) for every j′ ∈ xh with vhj′ < 0.
If Condition (1) holds, then we also obtain vh(x

′
h) = vh(xh) ≥ vh(x

′
i − g) for every g ∈ xi with

vhg > 0, since x′
h = xh and x′

i = xi + j but vhj ≤ 0. Thus h continues to be EFX towards i in x′.
If Condition (2) holds, then, using vhj ≤ 0 we obtain vh(x

′
h − j′) = vh(xh − j′) ≥ vh(xi) ≥ vh(x

′
i)

for every j′ ∈ x′
h with vhj′ < 0, once again showing that h does not EFX-envy i in x′.

Next we argue that resolving any cycles in G∗
x
preserves EFX. Suppose we reallocate the bundles

according to a top-envy cycle C in G∗
x
. For any agent i who is not in the cycle, her bundle is not

changed by the reallocation. Although other bundles are reallocated, the items in each bundle do
not change and thus i does not EFX-envy any other agent. For any agent i ∈ C, she will obtain
her best bundle in this partial allocation x, since G∗

x
is the top-envy graph, and hence the cycle-

swapped allocation is envy-free for agent i. Therefore, resolving any cycles in G∗
x
preserves EFX.

Thus x′ is EFX.
The case of binary mixed goods follows by the same analysis and the fact that the partial

allocation of Algorithm 3, after the end of Phase 2 is EFX0+PO.

5.2 PropMX for Restricted Mixed Goods with General Bads

Our final result shows that we can obtain PropMX allocations for the restricted mixed goods
setting with general bads. To achieve this, we utilize our reduction in Lemma 10 from general bads
instances to IDO bads instances. Note that the allocation is not guaranteed to be Pareto Optimal.

Theorem 6. Given a fair division instance of restricted mixed goods, a PropMX allocation can be
computed in polynomial-time. Furthermore, for the case of binary mixed goods, a PropMX0 alloca-
tion can be computed in polynomial-time.

Proof. Given any fair division instance of mixed goods with restricted valuations I = (N,M,V),
we first turn it into a new fair division instance of mixed goods with restricted valuations and
IDO bads I ′ = (N,M,V ′), via the reduction of Lemma 10 on the set of pure bads M−. Notice
that, as long as the algorithm for IDO bads that is executed on the I ′ returns an allocation x that
is PropMX+PO, we know that any item j /∈ M− has been allocated in x to an agent that has
non-negative value for it. Thus, since the reduction of Lemma 10 does not distinguish between M+

and M0, it still holds in this setting as well.
Next, notice that the partial allocation of Algorithm 2 after the end of Phase 2 has allocated

all items j /∈M−. Also, it is EFX+PO, and thus by Lemma 1, it is PropMX+PO. Therefore, one
can use the partial allocation of pure bads of Phase 3 for I ′ as a guide on how to allocate the items
in M− and maintain PropMX, as Lemma 10 describes.

The case of binary mixed goods follows by the same analysis and the fact that the partial
allocation of Algorithm 3, after the end of Phase 2 is PropMX0+PO.

6 Discussion

In this paper, we study the fair and efficient allocation of an indivisible mixed manna. We mea-
sured efficiency through Pareto-optimality, and fairness through EFX and PropMX, where PropMX
combines PropM for goods and PropX for bads. We obtained polynomial time algorithms to find
allocations that satisfy a mix of these guarantees for several classes of instances, namely separable,
restricted mixed goods, and binary mixed goods.

Much like EFX+PO, settling the existence of PropM+PO allocations is a challenging open
problem even for goods manna. One can also ask whether allocations satisfying more demanding

19

fairness notions than PropM exist, both for goods and the more general mixed manna setting.
Lastly, the existence of weighted-PropMX allocations for agents with unequal entitlements is an
interesting direction for future work.

References

[1] Martin Aleksandrov and Toby Walsh. Greedy algorithms for fair division of mixed manna,
2019. arXiv:1911.11005.

[2] Martin Aleksandrov and Toby Walsh. Two algorithms for additive and fair division of mixed
manna, 2020. arXiv:2007.04129.

[3] Georgios Amanatidis, Georgios Birmpas, Aris Filos-Ratsikas, Alexandros Hollender, and
Alexandros A. Voudouris. Maximum Nash welfare and other stories about EFX. In Proceed-
ings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, (IJCAI),
pages 24–30, 2020.

[4] Haris Aziz, Ioannis Caragiannis, Ayumi Igarashi, and Toby Walsh. Fair allocation of indivisible
goods and chores. In Proceedings of the 28th International Joint Conference on Artificial
Intelligence, IJCAI’19, page 53–59. AAAI Press, 2019.

[5] Haris Aziz, Hervé Moulin, and Fedor Sandomirskiy. A polynomial-time algorithm for comput-
ing a pareto optimal and almost proportional allocation. CoRR, abs/1909.00740, 2019. URL:
http://arxiv.org/abs/1909.00740, arXiv:1909.00740.

[6] Artem Baklanov, Pranav Garimidi, Vasilis Gkatzelis, and Daniel Schoepflin. Propm al-
locations of indivisible goods to multiple agents. CoRR, abs/2105.11348, 2021. URL:
https://arxiv.org/abs/2105.11348, arXiv:2105.11348.

[7] Nikhil Bansal and Maxim Sviridenko. The santa claus problem. In Proceedings of the Thirty-
Eighth Annual ACM Symposium on Theory of Computing, STOC ’06, page 31–40, New York,
NY, USA, 2006. Association for Computing Machinery. doi:10.1145/1132516.1132522.

[8] Siddharth Barman and Sanath Kumar Krishnamurthy. Approximation algorithms for maximin
fair division. ACM Trans. Econ. Comput., 8(1), March 2020. doi:10.1145/3381525.

[9] Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish. Finding fair and efficient
allocations. In Proceedings of the 19th ACM Conference on Economics and Computation (EC),
pages 557–574, 2018.

[10] Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish. Greedy algorithms for
maximizing Nash social welfare. In Proceedings of the 17th International Conference on Au-
tonomous Agents and MultiAgent Systems (AAMAS), page 7–13, 2018.

[11] Umang Bhaskar, A. R. Sricharan, and Rohit Vaish. On approximate envy-freeness
for indivisible chores and mixed resources. CoRR, abs/2012.06788, 2020. URL:
https://arxiv.org/abs/2012.06788, arXiv:2012.06788.

[12] Anna Bogomolnaia, Hervé Moulin, Fedor Sandomirskiy, and Elena Yanovskaya. Com-
petitive division of a mixed manna. Econometrica, 85(6):1847–1871, 2017. URL:
http://www.jstor.org/stable/44955184.

20

http://arxiv.org/abs/1911.11005
http://arxiv.org/abs/2007.04129
http://arxiv.org/abs/1909.00740
http://arxiv.org/abs/1909.00740
https://arxiv.org/abs/2105.11348
http://arxiv.org/abs/2105.11348
https://doi.org/10.1145/1132516.1132522
https://doi.org/10.1145/3381525
https://arxiv.org/abs/2012.06788
http://arxiv.org/abs/2012.06788
http://www.jstor.org/stable/44955184

[13] Sylvain Bouveret and Michel Lemâıtre. Characterizing conflicts in fair division of indivisible
goods using a scale of criteria. Autonomous Agents and Multi-Agent Systems, 30(2):259–290,
Mar 2016. doi:10.1007/s10458-015-9287-3.

[14] Ioannis Caragiannis, David Kurokawa, Hervé Moulin, Ariel D. Procaccia, Nisarg Shah, and
Junxing Wang. The unreasonable fairness of maximum Nash welfare. In Proceedings of the
17th ACM Conference on Economics and Computation (EC), page 305–322, 2016.

[15] Bhaskar Ray Chaudhury, Jugal Garg, and Kurt Mehlhorn. EFX exists for three agents. In
Proceedings of the 21st ACM Conference on Economics and Computation (EC), page 1–19,
2020.

[16] Andreas Darmann and Joachim Schauer. Maximizing Nash product social welfare in allocating
indivisible goods. SSRN Electronic Journal, 247, 01 2014.

[17] D.K. Foley. Resource allocation and the public sector. Yale Economic Essays, 7(1):45–98,
1967.

[18] Jugal Garg and Peter McGlaughlin. Computing competitive equilibria with mixed manna.
In Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent
Systems, AAMAS ’20, page 420–428, Richland, SC, 2020. International Foundation for Au-
tonomous Agents and Multiagent Systems.

[19] Jugal Garg and Aniket Murhekar. Computing fair and efficient allocations with few utility
values. In Proc. 14th Symp. Algorithmic Game Theory (SAGT), 2021. To appear.

[20] Jugal Garg, Aniket Murhekar, and John Qin. Fair and efficient allocations of chores under bival-
ued preferences. CoRR, abs/2110.09601, 2021. URL: https://arxiv.org/abs/2110.09601,
arXiv:2110.09601.

[21] Daniel Halpern, Ariel D. Procaccia, Alexandros Psomas, and Nisarg Shah. Fair division with
binary valuations: One rule to rule them all. In Xujin Chen, Nikolai Gravin, Martin Hoefer,
and Ruta Mehta, editors, Web and Internet Economics, pages 370–383, Cham, 2020. Springer
International Publishing.

[22] Xin Huang and Pinyan Lu. An algorithmic framework for approximating maximin share alloca-
tion of chores. In Proceedings of the 22nd ACM Conference on Economics and Computation,
EC ’21, page 630–631, New York, NY, USA, 2021. Association for Computing Machinery.
doi:10.1145/3465456.3467555.

[23] Rucha Kulkarni, Ruta Mehta, and Setareh Taki. Indivisible mixed manna: On the computabil-
ity of mms+po allocations. In Proceedings of the 22nd ACM Conference on Economics and
Computation, EC ’21, page 683–684, New York, NY, USA, 2021. Association for Computing
Machinery. doi:10.1145/3465456.3467553.

[24] Bo Li, Yingkai Li, and Xiaowei Wu. Almost proportional allocations for indivisi-
ble chores. CoRR, abs/2103.11849, 2021. URL: https://arxiv.org/abs/2103.11849,
arXiv:2103.11849.

[25] R. J. Lipton, E. Markakis, E. Mossel, and A. Saberi. On approximately fair allocations of
indivisible goods. In Proceedings of the 5th ACM Conference on Electronic Commerce (EC),
pages 125–131, 2004.

21

https://doi.org/10.1007/s10458-015-9287-3
https://arxiv.org/abs/2110.09601
http://arxiv.org/abs/2110.09601
https://doi.org/10.1145/3465456.3467555
https://doi.org/10.1145/3465456.3467553
https://arxiv.org/abs/2103.11849
http://arxiv.org/abs/2103.11849

[26] Hervé Moulin. Fair division in the internet age. Annual Review of Economics, 11(1):407–
441, 2019. arXiv:https://doi.org/10.1146/annurev-economics-080218-025559,
doi:10.1146/annurev-economics-080218-025559.

[27] Aniket Murhekar and Jugal Garg. On fair and efficient allocations of indivisible goods. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 35(6):5595–5602, May 2021.

[28] Benjamin Plaut and Tim Roughgarden. Almost envy-freeness with general valuations. In Pro-
ceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
page 2584–2603, 2018.

[29] Ariel D. Procaccia. Technical perspective: An answer to fair division’s most enigmatic question.
Commun. ACM, 63(4):118, 2020.

[30] H. Steinhaus. Sur la division pragmatique. Econometrica, 17(1):315–319, 1949.

[31] Hal R Varian. Equity, envy, and efficiency. Journal of Economic Theory, 9(1):63 – 91, 1974.

A Counterexamples

A.1 Non-Existence of PropX for Goods

In this section, we present an example that shows PropX allocations need not exist for goods, even
for the simpler setting of identical valuations. The example is due to Aziz, Moulin and Sandomirskiy
[26, 5]. We present it here as well for completeness.

Consider three agents a and b, and five goods g1, g2, g3, g4 and g5. The agents’ valuations for
the goods are the following:

g1 g2 g3 g4 g5
a 3 3 3 3 1
b 3 3 3 3 1
c 3 3 3 3 1

Notice that the proportional share for every agent is 13
3 and that in any balanced allocation

one agent gets two items of value 3, one agent gets one item of value 3 along with g5, which
has value 1 and one agent gets only one item of value 3. Without loss of generality, let xa =
{g1, g4} ,xb = {g2, g5} and xc = {g3}. Notice that vc(xc) = 3, and even if c receives g5, we have
vc(xc) + vc5 = 4 < 13

3 . Thus, there exists no PropX allocation for this instance.

A.2 Non-Existence of PropM0+PO

In this section, we present an example that shows PropM0+PO allocations need not always exist,
even for the simpler setting of restricted goods and no bads. Consider two agents a and b, and
three goods g1, g2 and g3. The agents’ valuations for the goods are the following:

g1 g2 g3
a 1 0 2
b 0 1 2

22

http://arxiv.org/abs/https://doi.org/10.1146/annurev-economics-080218-025559
https://doi.org/10.1146/annurev-economics-080218-025559

Notice that for any PO allocation x, we have g1 ∈ xa and g2 ∈ xb. Also notice that va(M) =
vb(M) = 3

2 . However, either a or b will not receive g3. Assume without loss of generality that
g3 ∈ xa. We have db(x) = 0, since the maximin item for agent b is g1, and thus vb(xb) + db(x) =
1 + 0 < 3/2. Therefore, there exists no PropM0+PO allocation for this instance.

23

	1 Introduction
	1.1 Our Contributions.
	1.2 Other Related Work
	1.3 Organization

	2 Preliminaries
	3 The Restricted Mixed Goods Setting
	3.1 EFX+PO for Restricted Goods
	3.2 EFX+PO for Restricted Mixed Goods and Identical Bads
	3.3 EFX0+PO for Binary Mixed Goods and Identical Bads

	4 PropMX0 for Separable Instances
	4.1 Separable Instances with IDO Bads
	4.2 General Separable Instances

	5 Revisiting Restricted Mixed Goods
	5.1 EFX for Restricted Mixed Goods with IDO Bads
	5.2 PropMX for Restricted Mixed Goods with General Bads

	6 Discussion
	A Counterexamples
	A.1 Non-Existence of PropX for Goods
	A.2 Non-Existence of PropM0+PO

