Prophet Inequalities for Cost Minimization

Vasilis Livanos

joint work with Ruta Mehta

University of Illinois Urbana-Champaign ACAC 2022

August 25th, 2022

L, Mehta

Prophet Inequalities for Cost Minimization

1/18

- Want to sell an orange. We see *n* buyers *sequentially*.
- Buyer *i* has private valuation *v_i*. How to offer prices?
 - Option 1: Run an auction. Meh.

- Want to sell an orange. We see *n* buyers *sequentially*.
- Buyer *i* has private valuation *v_i*. How to offer prices?
 - Option 1: Run an auction. Meh.
 - Option 2: Become a grocer!
- Plan:
 - Set price T.
 - 2 Leave store.
 - 3 ???
 - In Profit.

- Worst-case order + unknown v_i 's = Can't do anything.
- Random order + unknown v_i 's = Secretary problem.
- Worst-case order + some knowledge of v_i 's = Prophet inequality.

- Worst-case order + unknown v_i 's = Can't do anything.
- Random order + unknown v_i 's = Secretary problem.
- Worst-case order + some knowledge of v_i 's = Prophet inequality.
- n random variables X₁,..., X_n ~ D₁,..., D_n arriving in adversarial order.
- Step $i \Longrightarrow$ observe realization x_i .
 - Accept $x_i \Longrightarrow$ Game ends.
 - Reject $x_i \Longrightarrow$ Step i + 1.
- Goal: Select max_i x_i.

• $x_1 = 2.74$

x₁ = 2.74
x₂ = 3.75

- $x_1 = 2.74$
- *x*₂ = 3.75
- *x*₃ = 2.81

イロト イヨト イヨト イヨト

- $x_1 = 2.74$
- *x*₂ = 3.75
- *x*₃ = 2.81
- *x*₄ = 5.66

< □ > < □ > < □ > < □ > < □ > < □ >

- \exists algorithm \mathcal{A} s.t. $\mathbb{E}[\mathcal{A}] \geq \frac{1}{2} \mathbb{E}[\max_{i=1}^{n} X_i]$, and this is tight [KS77].
- Many algorithms achieve 1/2.

 $\mathcal{A}_{\mathcal{T}}$: "Fixed-Threshold" Algorithm

Set threshold T based on D_1, \ldots, D_n . Accept first $x_i \ge T$.

• How to choose T?

- \exists algorithm \mathcal{A} s.t. $\mathbb{E}[\mathcal{A}] \geq \frac{1}{2} \mathbb{E}[\max_{i=1}^{n} X_i]$, and this is tight [KS77].
- Many algorithms achieve 1/2.

$\mathcal{A}_{\mathcal{T}}$: "Fixed-Threshold" Algorithm

Set threshold T based on D_1, \ldots, D_n . Accept first $x_i \ge T$.

• How to choose T?

Set T = median of the distribution of maxⁿ_{i=1} X_i, i.e. Pr[maxⁿ_{i=1} X_i ≥ T] = ½ [Sam84].
Set T = ½ ℝ[maxⁿ_{i=1} X_i] [KW12].

$$X_1 = 1$$
 w.p. 1, and $X_2 = egin{cases} rac{1}{arepsilon} & ext{w.p. } arepsilon \ 0 & ext{w.p. } 1 - arepsilon \end{cases}$

For every algorithm \mathcal{A} , $\mathbb{E}[\mathcal{A}] = 1$. Prophet:

$$\mathbb{E}[\max_{i} X_{i}] = \frac{1}{\varepsilon} \cdot \varepsilon + 1 \cdot (1 - \varepsilon) = 2 - \varepsilon.$$

ヨト・イヨト・

•

- If we are buying? Same problem?
- Cost Prophet Inequality: Select $\min_i x_i$ subject to selecting at least one \overline{i} .

- If we are buying? Same problem?
- Cost Prophet Inequality: Select $\min_i x_i$ subject to selecting at least one \overline{i} .

$$X_1 = 1$$
 w.p. 1, and $X_2 = egin{cases} 0 & ext{w.p. } 1 - 1/L \ L & ext{w.p. } 1/L \end{cases}$.

For every algorithm \mathcal{A} , $\mathbb{E}[\mathcal{A}] = 1$. Prophet:

$$\mathbb{E}[\min_{i} X_{i}] = 1 \cdot \frac{1}{L} + 0 \cdot \left(1 - \frac{1}{L}\right) = 1/L.$$

- Focus on I.I.D. $X_1, \ldots, X_n \sim D$.
- Single threshold not good enough*, need multiple thresholds.

Theorem 1: Optimal Threshold Algorithm \mathcal{A}

Let G(i) be \mathcal{A} 's expected value, when it sees X_i, \ldots, X_n . The algorithm \mathcal{A} which sets $\tau_i = G(i+1)$ and accepts the first *i* such that $X_i \leq \tau_i$ is optimal. • Need a tool to classify different distributions.

Hazard Rate (aka Failure Rate)

For a distribution D with cdf F and pdf f, the hazard rate is defined as

$$h(x) \triangleq \frac{f(x)}{1-F(x)}.$$

• Intuition: $h(x) = \Pr[X = x | X \ge x]$ (for discrete distributions).

• Need a tool to classify different distributions.

Hazard Rate (aka Failure Rate)

For a distribution D with cdf F and pdf f, the hazard rate is defined as

$$h(x) \triangleq \frac{f(x)}{1-F(x)}.$$

- Intuition: $h(x) = \Pr[X = x | X \ge x]$ (for discrete distributions).
- *h* monotonically increasing → Monotone Hazard Rate (MHR) distribution.
- MHR distributions don't have heavy tails.
- Important in revenue maximization via virtual valuations.

- Cumulative Hazard Rate: $H(x) = \int_0^x h(u) du$.
- <u>Idea</u>: Study distributions with polynomial *H*; let's call them *P_H*. Approximate all* other distributions via polynomials.

$$H(x) = \sum_{i=1}^k a_i x^{d_i}, \qquad 0 < d_1 \leq \cdots \leq d_k.$$

- d_1 controls how heavy D's tail is.
- $d_1 \ge 1 \implies$ MHR distribution.

Theorem 2

For every distribution $D \in P_H$ and I.I.D. random variables drawn from D, \exists a $\lambda(d_1)$ -competitive cost prophet inequality, where

$$\lambda(d_1) = rac{(1+1/d_1)^{1/d_1}}{\Gamma(1+1/d_1)}$$

Furthermore, this is tight for $H(x) = x^{d_1}$.

• Via Stirling's approximation

$$\lambda(d_1) pprox c \cdot e^{1/d_1}.$$

Positive or Negative Result?

• Both! Ratio can be arbitrarily bad, but constant for every fixed D.

- For $d_1 \ge 1 \implies$ distribution is MHR.
- Special case of "regular" distributions; exponential-like.
- $\lambda(d_1)$ decreasing in $d_1 \implies$

$$\lambda(d_1) \leq \frac{(1+1/1)^1}{\Gamma(1+1/1)} = 2,$$

for all MHR distributions.

• 2 is tight for the exponential distribution.

- Single threshold suffices for single-item classical prophet inequality!
- Impossible for cost prophet inequality.

Theorem 3

For every distribution $D \in P_H$ and I.I.D. random variables drawn from D, \exists a single threshold T such that accepting the first i where $X_i \leq T$ yields a $O\left((\log n)^{1/d_1}\right)$ -approximation to $\mathbb{E}[\min_i X_i]$. Furthermore, this is tight for $H(x) = x^{d_1}$.

- Optimal-threshold algorithm characterization for CPI.
- 2 Distribution-dependent constant for polynomial *H*.
- Oniversal constant 2 for MHR distributions.
- Oly-logarithmic ratio with a single threshold.

- Only use k-thresholds for 1 < k < n. How does the ratio change?
- Get universal constant for subclass of distributions, like MHR; maybe *regular*?
- Only have sample access to \mathcal{D} , how does the ratio with the number of samples?
- Impossibility result does not apply in the *free order* setting. I.I.D. case is upper bound, but is a distribution-dependent constant-factor ratio possible?

QUESTIONS ?

イロト イポト イヨト イヨト

- [KS77] Ulrich Krengel and Louis Sucheston. "Semiamarts and finite values". In: Bull. Amer. Math. Soc. 83.4 (July 1977), pp. 745–747. URL: https://projecteuclid.org:443/euclid.bams/1183538915.
- [KW12] Robert Kleinberg and S. Matthew Weinberg. "Matroid Prophet Inequalities". In: CoRR abs/1201.4764 (2012). arXiv: 1201.4764. URL: http://arxiv.org/abs/1201.4764.
- [Sam84] Ester Samuel-Cahn. "Comparison of Threshold Stop Rules and Maximum for Independent Nonnegative Random Variables". In: *The Annals of Probability* 12.4 (1984), pp. 1213–1216. ISSN: 00911798. URL: http://www.jstor.org/stable/2243359.