Prophet Inequalities for Cost Minimization

Vasilis Livanos

joint work with Ruta Mehta

University of Illinois Urbana-Champaign ACAC 2022

August 25th, 2022

Motivation

- Want to sell an orange. We see n buyers sequentially.
- Buyer i has private valuation v_{i}. How to offer prices?
- Option 1: Run an auction. Meh.

Motivation

- Want to sell an orange. We see n buyers sequentially.
- Buyer i has private valuation v_{i}. How to offer prices?
- Option 1: Run an auction. Meh.
- Option 2: Become a grocer!
- Plan:
(1) Set price T.
(2) Leave store.
(3) ???
(9) Profit.

Prophet Inequality

- Worst-case order + unknown v_{i} 's $=$ Can't do anything.
- Random order + unknown v_{i} 's $=$ Secretary problem.
- Worst-case order + some knowledge of v_{i} 's $=$ Prophet inequality.

Prophet Inequality

- Worst-case order + unknown v_{i} 's $=$ Can't do anything.
- Random order + unknown v_{i} 's $=$ Secretary problem.
- Worst-case order + some knowledge of v_{i} 's $=$ Prophet inequality.
- n random variables $X_{1}, \ldots, X_{n} \sim D_{1}, \ldots, D_{n}$ arriving in adversarial order.
- Step $i \Longrightarrow$ observe realization x_{i}.
- Accept $x_{i} \Longrightarrow$ Game ends.
- Reject $x_{i} \Longrightarrow$ Step $i+1$.
- Goal: Select $\max _{i} x_{i}$.

Let's Play

Let's Play

- $x_{1}=2.74$

Let's Play

- $x_{1}=2.74$
- $x_{2}=3.75$

Let's Play

- $x_{1}=2.74$
- $x_{2}=3.75$
- $x_{3}=2.81$

Let's Play

- $x_{1}=2.74$
- $x_{2}=3.75$
- $x_{3}=2.81$
- $x_{4}=5.66$

Prophet Inequality

- \exists algorithm \mathcal{A} s.t. $\mathbb{E}[\mathcal{A}] \geq \frac{1}{2} \mathbb{E}\left[\max _{i=1}^{n} X_{i}\right]$, and this is tight [KS77].
- Many algorithms achieve $1 / 2$.

\mathcal{A}_{T} : "Fixed-Threshold" Algorithm

Set threshold T based on D_{1}, \ldots, D_{n}. Accept first $x_{i} \geq T$.

- How to choose T?

Prophet Inequality

- \exists algorithm \mathcal{A} s.t. $\mathbb{E}[\mathcal{A}] \geq \frac{1}{2} \mathbb{E}\left[\max _{i=1}^{n} X_{i}\right]$, and this is tight [KS77].
- Many algorithms achieve $1 / 2$.

\mathcal{A}_{T} : "Fixed-Threshold" Algorithm

Set threshold T based on D_{1}, \ldots, D_{n}. Accept first $x_{i} \geq T$.

- How to choose T?
(1) Set $T=$ median of the distribution of $\max _{i=1}^{n} X_{i}$, i.e.
$\operatorname{Pr}\left[\max _{i=1}^{n} X_{i} \geq T\right]=\frac{1}{2}$ [Sam84].
(2) Set $T=\frac{1}{2} \mathbb{E}\left[\max _{i=1}^{n} X_{i}\right][K W 12]$.

$1 / 2$ is Tight

$$
X_{1}=1 \quad \text { w.p. } 1, \text { and } X_{2}= \begin{cases}\frac{1}{\varepsilon} & \text { w.p. } \varepsilon \\ 0 & \text { w.p. } 1-\varepsilon\end{cases}
$$

For every algorithm $\mathcal{A}, \mathbb{E}[\mathcal{A}]=1$.
Prophet:

$$
\mathbb{E}\left[\max _{i} X_{i}\right]=\frac{1}{\varepsilon} \cdot \varepsilon+1 \cdot(1-\varepsilon)=2-\varepsilon
$$

Cost Prophet Inequality

- If we are buying? Same problem?
- Cost Prophet Inequality: Select $\min _{i} x_{i}$ subject to selecting at least one i.

Cost Prophet Inequality

- If we are buying? Same problem?
- Cost Prophet Inequality: Select $\min _{i} x_{i}$ subject to selecting at least one i.

$$
X_{1}=1 \quad \text { w.p. } 1, \text { and } X_{2}= \begin{cases}0 & \text { w.p. } 1-1 / L \\ L & \text { w.p. } 1 / L\end{cases}
$$

For every algorithm $\mathcal{A}, \mathbb{E}[\mathcal{A}]=1$.
Prophet:

$$
\mathbb{E}\left[\min _{i} X_{i}\right]=1 \cdot \frac{1}{L}+0 \cdot\left(1-\frac{1}{L}\right)=1 / L .
$$

What can we do?

- Focus on I.I.D. $X_{1}, \ldots, X_{n} \sim D$.
- Single threshold not good enough*, need multiple thresholds.

Theorem 1: Optimal Threshold Algorithm \mathcal{A}

Let $G(i)$ be \mathcal{A} 's expected value, when it sees X_{i}, \ldots, X_{n}.
The algorithm \mathcal{A} which sets $\tau_{i}=G(i+1)$ and accepts the first i such that $X_{i} \leq \tau_{i}$ is optimal.

Detour: Hazard Rate

- Need a tool to classify different distributions.

Hazard Rate (aka Failure Rate)

For a distribution D with cdf F and pdf f, the hazard rate is defined as

$$
h(x) \triangleq \frac{f(x)}{1-F(x)} .
$$

- Intuition: $h(x)=\operatorname{Pr}[X=x \mid X \geq x]$ (for discrete distributions).

Detour: Hazard Rate

- Need a tool to classify different distributions.

Hazard Rate (aka Failure Rate)

For a distribution D with $\operatorname{cdf} F$ and pdf f, the hazard rate is defined as

$$
h(x) \triangleq \frac{f(x)}{1-F(x)} .
$$

- Intuition: $h(x)=\operatorname{Pr}[X=x \mid X \geq x]$ (for discrete distributions).
- h monotonically increasing \Longrightarrow Monotone Hazard Rate (MHR) distribution.
- MHR distributions don't have heavy tails.
- Important in revenue maximization via virtual valuations.

Detour: Cumulative Hazard Rate

- Cumulative Hazard Rate: $H(x)=\int_{0}^{x} h(u) d u$.
- Idea: Study distributions with polynomial H; let's call them P_{H}. Approximate all ${ }^{*}$ other distributions via polynomials.

$$
H(x)=\sum_{i=1}^{k} a_{i} x^{d_{i}}, \quad 0<d_{1} \leq \cdots \leq d_{k}
$$

- d_{1} controls how heavy D's tail is.
- $d_{1} \geq 1 \Longrightarrow$ MHR distribution.

Fixed Distribution, Optimal Algorithm

Theorem 2

For every distribution $D \in P_{H}$ and I.I.D. random variables drawn from D, \exists a $\lambda\left(d_{1}\right)$-competitive cost prophet inequality, where

$$
\lambda\left(d_{1}\right)=\frac{\left(1+1 / d_{1}\right)^{1 / d_{1}}}{\Gamma\left(1+1 / d_{1}\right)} .
$$

Furthermore, this is tight for $H(x)=x^{d_{1}}$.

- Via Stirling's approximation

$$
\lambda\left(d_{1}\right) \approx c \cdot e^{1 / d_{1}}
$$

Positive or Negative Result?

- Both! Ratio can be arbitrarily bad, but constant for every fixed D.

Special Case: MHR Distributions

- For $d_{1} \geq 1 \Longrightarrow$ distribution is MHR.
- Special case of "regular" distributions; exponential-like.
- $\lambda\left(d_{1}\right)$ decreasing in $d_{1} \Longrightarrow$

$$
\lambda\left(d_{1}\right) \leq \frac{(1+1 / 1)^{1}}{\Gamma(1+1 / 1)}=2
$$

for all MHR distributions.

- 2 is tight for the exponential distribution.

Single Threshold

- Single threshold suffices for single-item classical prophet inequality!
- Impossible for cost prophet inequality.

Theorem 3

For every distribution $D \in P_{H}$ and I.I.D. random variables drawn from D, \exists a single threshold T such that accepting the first i where $X_{i} \leq T$ yields a $\mathrm{O}\left((\log n)^{1 / d_{i}}\right)$-approximation to $\mathbb{E}\left[\min _{i} X_{i}\right]$.
Furthermore, this is tight for $H(x)=x^{d_{1}}$.

Summary

(1) Optimal-threshold algorithm characterization for CPI.
(2) Distribution-dependent constant for polynomial H.
(3) Universal constant 2 for MHR distributions.
(9) Poly-logarithmic ratio with a single threshold.

Open Questions

- Only use k-thresholds for $1<k<n$. How does the ratio change?
- Get universal constant for subclass of distributions, like MHR; maybe regular?
- Only have sample access to \mathcal{D}, how does the ratio with the number of samples?
- Impossibility result does not apply in the free order setting. I.I.D. case is upper bound, but is a distribution-dependent constant-factor ratio possible?

QUESTIONS ?

References I

[KS77] Ulrich Krengel and Louis Sucheston. "Semiamarts and finite values". In: Bull. Amer. Math. Soc. 83.4 (July 1977), pp. 745-747. URL:
https:// projecteuclid.org:443/euclid.bams/1183538915.
[KW12] Robert Kleinberg and S. Matthew Weinberg. "Matroid Prophet Inequalities". In: CoRR abs/1201.4764 (2012). arXiv: 1201.4764. URL: http://arxiv.org/abs/1201.4764.
[Sam84] Ester Samuel-Cahn. "Comparison of Threshold Stop Rules and Maximum for Independent Nonnegative Random Variables". In: The Annals of Probability 12.4 (1984), pp. 1213-1216. ISSN: 00911798. URL: http://www.jstor.org/stable/2243359.

