
An Introduction to Prophet Inequalities

Vasilis Livanos

Theory and Algorithms Group
Department of Computer Science

University of Illinois at Urbana-Champaign

livanos3@illinois.edu

October 5th, 2020

VL (UIUC) Intro to Prophet Inequalities October 5th, 2020 1 / 38



Overview

1 Introduction
The Prophet Inequality Problem
The Secretary Problem

2 Generalizations and Constraints
Selecting Multiple Values
Online Contention Resolution Schemes

3 Variations and Open Problems

VL (UIUC) Intro to Prophet Inequalities October 5th, 2020 2 / 38



Motivation

Suppose we want to sell an orange. We know we will see n potential
buyers, one after the other in some order, and we have to decide
whether to sell to buyer i before we see buyer i + 1.
The buyers have some private valuations v1, . . . , vn for the orange.
How do we decide on what prices to offer?
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Motivation

If buyer i buys the orange at price p and values it at vi , then they
receive utility vi − p, and we receive revenue p.
We want to maximize the social welfare (the sum of utilities, which
includes our revenue), and want to compare against the best possible
offline decision.

1 If we assume the buyers arrive in worst-case order and their valuations
for the orange are arbitrary, then we cannot achieve any meaningful
competitive ratio.

2 Assume they arrive in worst-case order but their valuations are drawn
independently from distributions D1, . . . ,Dn. =⇒ Prophet Inequality
Problem

3 Assume their valuations are arbitrary, but they arrive in random order.
=⇒ Secretary Problem∗
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Prophet Inequality Problem (1/2)

We are given n non-negative random variables X1, . . . ,Xn and their
distributions D1, . . . ,Dn. We see a realization from each Xi in
adversarial order.
At every step i , when we see the realization of Xi , we have to
immediately and irrevocably decide whether to

1 select Xi and stop, or
2 ignore Xi and continue to the next step.

We want to select the highest possible value, and compare against
X ∗ = max1≤i≤n Xi on expectation.
There exists an algorithm which selects a value V such that
E[V ] ≥ 1

2 E[X ∗], and no algorithm can achieve better competitive ratio
[KS77].
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Prophet Inequality Problem (2/2)

Simple and elegant problem in optimal stopping theory, solved since
the ’70s. Unsurprisingly, there exist many algorithms for it.

AT : “Fixed-Threshold” Algorithm
Select a threshold T based on D1, . . . ,Dn, and accept the first Xi ≥ T .

Select T = median of the distribution of X ∗, i.e. Pr[X ∗ ≥ T ] = 1
2

(assuming no point mass on T ) [Sam84].
Select T = 1

2 E[X ∗] [KW12].
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A Grocer’s Dilemma - Posted-Price Mechanisms (1/2)

The grocer will set a price for the orange at the beginning of the day.
The threshold T corresponds to the price posted on the orange by the
grocer. At this point, the grocer might as well leave the shop.
The first person who sees the orange and has valuation at least T will
buy it.
Prophet inequalities provide guarantees for posted-price mechanisms in
online auctions. Crucially, PPMs do not require bidding.
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A Grocer’s Dilemma - Posted Price Mechanisms (2/2)

Posted-price mechanisms are
1 Anonymous: All buyers are offered the same price, regardless of their

type distribution.
2 Static: The choice of which price to offer which buyer does not change

as the mechanism progresses.
3 Order-Oblivious: The pricing rule does not depend on the order in

which the buyers arrive, and in fact the order can be chosen by an
adaptive adversary.

4 Ex-post Individually Rational: No buyer is worse if they come to the
grocery store and see the orange than if they did not participate at all.

5 Strategy-Proof: There is no incentive for buyers to misreport, because
we do not even ask them for a bid!
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Proof of the Prophet Inequality
Pr[X ∗ ≥ T ] = 1

2 . Let Ei be the event we “reach” the i-th random variable.

E[V ] = T Pr[X ∗ ≥ T ] +
n∑

i=1
Pr[Ei ] · E[(Xi − T )+]

= T Pr[X ∗ ≥ T ] +
n∑

i=1
Pr
[

max
1≤j≤i−1

Xi < T
]
· E[(Xi − T )+]

≥ T Pr[X ∗ ≥ T ] +
n∑

i=1
Pr[X ∗ < T ] · E[(Xi − T )+]

= 1
2T + 1

2 E

[ n∑
i=1

(Xi − T )+
]

≥ 1
2T + 1

2 E
[
(X ∗ − T )+]

≥ 1
2 E[X ∗]

VL (UIUC) Intro to Prophet Inequalities October 5th, 2020 9 / 38



Proof of the Prophet Inequality
Pr[X ∗ ≥ T ] = 1

2 . Let Ei be the event we “reach” the i-th random variable.

E[V ] = T Pr[X ∗ ≥ T ] +
n∑

i=1
Pr[Ei ] · E[(Xi − T )+]

= T Pr[X ∗ ≥ T ] +
n∑

i=1
Pr
[

max
1≤j≤i−1

Xi < T
]
· E[(Xi − T )+]

≥ T Pr[X ∗ ≥ T ] +
n∑

i=1
Pr[X ∗ < T ] · E[(Xi − T )+]

= 1
2T + 1

2 E

[ n∑
i=1

(Xi − T )+
]

≥ 1
2T + 1

2 E
[
(X ∗ − T )+]

≥ 1
2 E[X ∗]

VL (UIUC) Intro to Prophet Inequalities October 5th, 2020 9 / 38



Proof of the Prophet Inequality
Pr[X ∗ ≥ T ] = 1

2 . Let Ei be the event we “reach” the i-th random variable.

E[V ] = T Pr[X ∗ ≥ T ] +
n∑

i=1
Pr[Ei ] · E[(Xi − T )+]

= T Pr[X ∗ ≥ T ] +
n∑

i=1
Pr
[

max
1≤j≤i−1

Xi < T
]
· E[(Xi − T )+]

≥ T Pr[X ∗ ≥ T ] +
n∑

i=1
Pr[X ∗ < T ] · E[(Xi − T )+]

= 1
2T + 1

2 E

[ n∑
i=1

(Xi − T )+
]

≥ 1
2T + 1

2 E
[
(X ∗ − T )+]

≥ 1
2 E[X ∗]

VL (UIUC) Intro to Prophet Inequalities October 5th, 2020 9 / 38



Proof of the Prophet Inequality
Pr[X ∗ ≥ T ] = 1

2 . Let Ei be the event we “reach” the i-th random variable.

E[V ] = T Pr[X ∗ ≥ T ] +
n∑

i=1
Pr[Ei ] · E[(Xi − T )+]

= T Pr[X ∗ ≥ T ] +
n∑

i=1
Pr
[

max
1≤j≤i−1

Xi < T
]
· E[(Xi − T )+]

≥ T Pr[X ∗ ≥ T ] +
n∑

i=1
Pr[X ∗ < T ] · E[(Xi − T )+]

= 1
2T + 1

2 E

[ n∑
i=1

(Xi − T )+
]

≥ 1
2T + 1

2 E
[
(X ∗ − T )+]

≥ 1
2 E[X ∗]

VL (UIUC) Intro to Prophet Inequalities October 5th, 2020 9 / 38



Proof of the Prophet Inequality
Pr[X ∗ ≥ T ] = 1

2 . Let Ei be the event we “reach” the i-th random variable.

E[V ] = T Pr[X ∗ ≥ T ] +
n∑

i=1
Pr[Ei ] · E[(Xi − T )+]

= T Pr[X ∗ ≥ T ] +
n∑

i=1
Pr
[

max
1≤j≤i−1

Xi < T
]
· E[(Xi − T )+]

≥ T Pr[X ∗ ≥ T ] +
n∑

i=1
Pr[X ∗ < T ] · E[(Xi − T )+]

= 1
2T + 1

2 E

[ n∑
i=1

(Xi − T )+
]

≥ 1
2T + 1

2 E
[
(X ∗ − T )+]

≥ 1
2 E[X ∗]

VL (UIUC) Intro to Prophet Inequalities October 5th, 2020 9 / 38



Proof of the Prophet Inequality
Pr[X ∗ ≥ T ] = 1

2 . Let Ei be the event we “reach” the i-th random variable.

E[V ] = T Pr[X ∗ ≥ T ] +
n∑

i=1
Pr[Ei ] · E[(Xi − T )+]

= T Pr[X ∗ ≥ T ] +
n∑

i=1
Pr
[

max
1≤j≤i−1

Xi < T
]
· E[(Xi − T )+]

≥ T Pr[X ∗ ≥ T ] +
n∑

i=1
Pr[X ∗ < T ] · E[(Xi − T )+]

= 1
2T + 1

2 E

[ n∑
i=1

(Xi − T )+
]

≥ 1
2T + 1

2 E
[
(X ∗ − T )+]

≥ 1
2 E[X ∗]

VL (UIUC) Intro to Prophet Inequalities October 5th, 2020 9 / 38



Proof of the Prophet Inequality
Pr[X ∗ ≥ T ] = 1

2 . Let Ei be the event we “reach” the i-th random variable.

E[V ] = T Pr[X ∗ ≥ T ] +
n∑

i=1
Pr[Ei ] · E[(Xi − T )+]

= T Pr[X ∗ ≥ T ] +
n∑

i=1
Pr
[

max
1≤j≤i−1

Xi < T
]
· E[(Xi − T )+]

≥ T Pr[X ∗ ≥ T ] +
n∑

i=1
Pr[X ∗ < T ] · E[(Xi − T )+]

= 1
2T + 1

2 E

[ n∑
i=1

(Xi − T )+
]

≥ 1
2T + 1

2 E
[
(X ∗ − T )+]

≥ 1
2 E[X ∗]

VL (UIUC) Intro to Prophet Inequalities October 5th, 2020 9 / 38



1
2 is Tight

Consider two random variables X1 and X2, where X1 = 1
deterministically, and X2 = 1

ε w.p. ε and X2 = 0 w.p. 1− ε, for some
small ε > 0.
Every algorithm will receive value 1 on expectation, regardless of which
element it picks.
The expected value of the prophet is

E[X ∗] = 1
ε
· ε+ 1 · (1− ε) = 2− ε.
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Secretary Problem (1/3)

Suppose now that we have no information on the distributions of the
buyers. However, we know that they arrive in random order.
At every step i , we see a value vi , and we have to immediately and
irrevocably decide whether to select vi or not.
Our objective is to maximize the probability with which we select
v∗ = max1≤i≤n vi . We assume distinct values for simplicity. What is
the optimal strategy?
Simple problem, with an elegant and striking solution.
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Secretary Problem (2/3)

When we see vi , we should never select it if vi < max1≤j≤i−1 vj ,
because then vi definitely won’t be the best overall.
Also, the decision whether to accept vi or not can only depend on
{v1, . . . , vi}. These imply that we should reject the first r values, for
some r , and accept the first vi where i > r such that
vi > max1≤j≤i−1 vi .
Let r = n

2 and v∗2 denote the second-highest value. Then,
1 with probability 1/2, v∗ is in the second half of the elements and,
2 with probability 1/2, v∗

2 is in the first half of the elements.
If that happens, we will select v∗. Therefore, for r = n

2 ,

Pr[vsel = v∗] ≥ 1
4 .
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Secretary Problem (3/3)

In fact, the optimal policy is to set r ≈ n
e . Then, one can show that

Pr[vsel = v∗] ≥ 1
e , and this bound is tight [Lin61; Dyn63].

What about our grocer? In this setting, the grocer does not want
money, but gives the orange away for free.
If we have probability p of giving the orange to the maximum-valued
buyer, then this immediately gives a p-competitive algorithm that
selects a value vsel such that

E[vsel] ≥ p · v∗.

The bound of 1
e is tight in this case, although the tightness proof does

not follow as easily.
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Overview

1 Introduction
The Prophet Inequality Problem
The Secretary Problem

2 Generalizations and Constraints
Selecting Multiple Values
Online Contention Resolution Schemes

3 Variations and Open Problems

VL (UIUC) Intro to Prophet Inequalities October 5th, 2020 15 / 38



k-Prophet (Uniform Matroid)

Can we derive simple algorithms for more complex settings? A natural
generalization is the setting where we can accept up to k values, for a
given k.
For the prophet inequality problem, we compare against
E
[
maxS:|S|≤k

∑
i∈S Xi

]
. For this setting, we differentiate between

“fixed-threshold” and “adaptive-threshold” algorithms.

A: “Adaptive-Threshold” Algorithm
For every i ∈ [n], at step i , set a threshold Ti , based on D1, . . . ,Dn and
X1, . . . ,Xi−1, and accept every Xi ≥ Ti until we have selected k values.
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Fixed-Threshold Algorithm for k-Prophet

One can give a simple fixed-threshold algorithm for this setting, which
achieves a 1− O

(√
log k

k

)
-competitive ratio.

Idea: Select a threshold T such that the expected number of values
≥ T are k − δ for some δ.
Since the realizations of the Xi ’s are independent, for an appropriately
chosen δ, one can show that the number of realizations that are at least
T are between k − 2δ and k, with high probability (Hoeffding bound).
For fixed realizations, let ST = {i ∈ [n] | Xi ≥ T}. Then∑

i∈ST

Xi =
∑
i∈ST

T + (Xi − T ) = T · |ST |+
∑
i∈ST

(Xi − T ).

For δ =
√

2k log k, we get

∑
i∈ST

Xi ≥

1−

√
8 log k

k

OPT .
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Adaptive-Threshold Algorithms

One can get a better competitive ratio via an adaptive-threshold
algorithm. The best known bound is 1− 1√

k+3 [Ala14], and is
asymptotically tight.
For the secretary problem, [Kle05] showed that we can get a
1− O

(
1√
k

)
competitive ratio, and this is also asymptotically tight.

The upper bound is obtained using a recursive algorithm. It first
partitions the sequence into an initial segment and final segment of
approximately equal length.
Then, it recursively chooses at most k

2 elements from the initial
segment, and sets a threshold value equal to the k

2 -th largest element
of the initial segment.
Finally, it chooses all elements of the final segment that meet this
threshold until exhausting its k allotted choices.
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Matroid Constraint

We can generalize our problems even further by requiring the selected
r.v.’s to be independent with respect to a constraint family
F = ([n], I). Here, we compare against E [maxS∈I

∑
i∈S Xi ] in the

prophet inequality setting.
A natural case to consider is when F is a matroid on [n]. This is the
first setting for which our problems differ significantly (as of yet).
[KW12] showed that there exists an (adaptive-threshold) algorithm for
the Matroid Prophet Inequality Problem which matches the
1
2 -competitive ratio of the single-item case!
In contrast, no constant-competitive algorithm is known for the
Matroid Secretary Problem as of yet. The best known algorithm gives
a O

(
1

log log r

)
-competitive ratio, where r is the rank of the matroid

[Lac14; FSZ18].
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General Constraints

How to generalize to different types or combinations of constraints?
Idea: Find a function g that is an upper bound on OPT . Model the
problem as an LP

max . g(y)
s.t. y ∈ PI (LP)

y ≥ 0

where PI is a convex relaxation of I.
Solving (LP) yields a fractional point x, which we want to round,
subject to our constraints F , but also in an online fashion.
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Contention Resolution Schemes

How can we round subject to constraints such that we always return a
feasible set?

Contention Resolution Scheme (informally) [CVZ11]
A (b, c)-balanced Contention Resolution Scheme (CRS) is a procedure
which receives a point x ∈ b · PI as input and returns a set S ∈ I which
contains every i ∈ [n] with probability at least c · xi .

This guarantee yields a bc-approximation w.r.t. OPTLP, and thus also
OPT .
While CRSs are great, they are of no help for our problems, since we
want to round the xi ’s in an online fashion.
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Online Contention Resolution Schemes

Surprisingly, this can be done with little loss in the approximation
guarantees via Online Contention Resolution Schemes (OCRSs)
[FSZ16]!.
Essentially, an OCRSs that gives an α-approximation w.r.t. OPTLP for
a constraint F , yields an equivalent α-competitive algorithm for the
prophet inequality problem w.r.t. F .
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Online Contention Resolution Schemes

OCRSs (and CRSs) exist for matroids, matchings, knapsacks, etc.
They are nice because we can combine them to obtain OCRSs for more
complicated constraints.
Recently, prophet inequalities have been used to give optimal OCRSs
for simple settings, implying the connection between the two is deeper.
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Overview

1 Introduction
The Prophet Inequality Problem
The Secretary Problem

2 Generalizations and Constraints
Selecting Multiple Values
Online Contention Resolution Schemes

3 Variations and Open Problems
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Prophet Secretary and I.I.D. Setting

What if we could get the best of both worlds?
In the Prophet Secretary Problem, we are given n non-negative random
variables X1, . . . ,Xn and their distributions D1, . . . ,Dn, and we observe
a realization from each Xi in random order.
Can we do better than 1

2? In fact, yes! [Esf+15] showed that there
exists a 1− 1

e -competitive algorithm, and recently, a
1− 1

e + d-competitive algorithm was discovered for some small
constant d > 0 [ACK17; CSZ18].
What if we knew that all random variables in the prophet inequality
setting were i.i.d.? Clearly the optimal bound in this case is not worse
than the prophet secretary problem.
[Cor+17] showed that the optimal ratio is ≈ 0.7451, and is actually
tight.
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General Objectives

Other objective functions have been considered as well. In these
settings, the objective is to select a set S ∈ I (for some constraint
family F) to maximize E [f (S)], and we compare against
E [maxT∈I f (T )].
When f is a submodular function, we can use OCRSs and obtain
constant-competitive algorithms for the Submodular Prophet Inequality
Problem [RS16]. More general functions (e.g. monotone subadditive)
have been studied as well [Rub16; RS16].
Furthermore, when f is a submodular function, [FZ18] showed that any
α-competitive algorithm for the Matroid Secretary Problem yields a
O (α)-competitive algorithm for the Submodular Matroid Secretary
Problem.
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Future Directions

1 Constant-competitive algorithm for the Matroid Secretary Problem.
2 Is there a deeper connection between OCRSs and prophet inequalities?
3 What is the best constant for the Prophet Secretary Problem?

and more...
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QUESTIONS ?
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Fixed-Threshold Algorithm for k-Prophet (Proof 1/2)

One can give a simple fixed-threshold algorithm for this setting, which
achieves a 1− O

(√
log k

k

)
-competitive ratio.

Idea: Select a threshold T such that the expected number of values
≥ T are k − δ for some δ.
Since the realizations of the Xi ’s are independent, for an appropriately
chosen δ, one can show that the number of realizations that are at least
T are between k − 2δ and k, with high probability (Hoeffding bound).
For fixed realizations, let ST = {i ∈ [n] | Xi ≥ T}. Then∑

i∈ST

Xi =
∑
i∈ST

T + (Xi − T ) = T · |ST |+
∑
i∈ST

(Xi − T ).

Since |ST | ≥ k − 2δ, our revenue is at least (k − 2δ)T .
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Fixed-Threshold Algorithm for k-Prophet (Proof 2/2)

Let S∗ be the optimal set selected by the prophet. Then

OPT =
∑
i∈S∗

Xi ≤
∑
i∈S∗

T + (Xi − T ) ≤ kT +
n∑

i=1
(Xi − T ),

Since |ST | ≤ k, we accepted every value that was at least T . Thus∑
i∈ST

(Xi − T ) =
n∑

i=1
(Xi − T ) ≥ OPT − kT ≥ k − 2δ

k (OPT − kT )

=
(

1− 2δ
k

)
OPT − (k − 2δ)T .

For δ =
√

2k log k, we get

∑
i∈ST

Xi ≥
(

1− 2δ
k

)
OPT =

1−

√
8 log k

k

OPT .
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