An Introduction to Prophet Inequalities

Vasilis Livanos

Theory and Algorithms Group Department of Computer Science University of Illinois at Urbana-Champaign

livanos3@illinois.edu

October 5th, 2020

Introduction

- The Prophet Inequality Problem
- The Secretary Problem

Generalizations and Constraints

- Selecting Multiple Values
- Online Contention Resolution Schemes

3 Variations and Open Problems

Motivation

VL (UIUC)

3

メロト メポト メヨト メヨト

• Suppose we want to sell an orange. We know we will see n potential buyers, one after the other in some order, and we have to decide whether to sell to buyer i before we see buyer i + 1.

- Suppose we want to sell an orange. We know we will see n potential buyers, one after the other in some order, and we have to decide whether to sell to buyer i before we see buyer i + 1.
- The buyers have some private valuations v_1, \ldots, v_n for the orange. How do we decide on what prices to offer?

Motivation

VL (UIUC)

2

メロト メポト メヨト メヨト

If buyer *i* buys the orange at price *p* and values it at *v_i*, then they receive utility *v_i* − *p*, and we receive revenue *p*.

< 1 k

- If buyer *i* buys the orange at price *p* and values it at *v_i*, then they receive utility *v_i* − *p*, and we receive revenue *p*.
- We want to maximize the social welfare (the sum of utilities, which includes our revenue), and want to compare against the best possible offline decision.

- If buyer *i* buys the orange at price *p* and values it at *v_i*, then they receive utility *v_i* − *p*, and we receive revenue *p*.
- We want to maximize the social welfare (the sum of utilities, which includes our revenue), and want to compare against the best possible offline decision.
 - If we assume the buyers arrive in *worst-case order* and their valuations for the orange are *arbitrary*, then we cannot achieve any meaningful competitive ratio.

- If buyer *i* buys the orange at price *p* and values it at v_i , then they receive utility $v_i p$, and we receive revenue *p*.
- We want to maximize the social welfare (the sum of utilities, which includes our revenue), and want to compare against the best possible offline decision.
 - If we assume the buyers arrive in *worst-case order* and their valuations for the orange are *arbitrary*, then we cannot achieve any meaningful competitive ratio.
 - ② Assume they arrive in *worst-case order* but their valuations are drawn independently from distributions D₁,..., D_n. ⇒ Prophet Inequality Problem

- If buyer *i* buys the orange at price *p* and values it at v_i , then they receive utility $v_i p$, and we receive revenue *p*.
- We want to maximize the social welfare (the sum of utilities, which includes our revenue), and want to compare against the best possible offline decision.
 - If we assume the buyers arrive in *worst-case order* and their valuations for the orange are *arbitrary*, then we cannot achieve any meaningful competitive ratio.
 - ② Assume they arrive in *worst-case order* but their valuations are drawn independently from distributions D₁,..., D_n. ⇒ Prophet Inequality Problem
 - Issume their valuations are *arbitrary*, but they arrive in *random order*.
 ⇒ Secretary Problem*

Prophet Inequality Problem (1/2)

VL (UIUC)

Intro to Prophet Inequalities

October 5th, 2020 5 / 38

Image: A matrix and a matrix

æ

Prophet Inequality Problem (1/2)

• We are given *n* non-negative random variables X_1, \ldots, X_n and their distributions D_1, \ldots, D_n . We see a realization from each X_i in *adversarial order*.

- We are given *n* non-negative random variables X_1, \ldots, X_n and their distributions D_1, \ldots, D_n . We see a realization from each X_i in *adversarial order*.
- At every step *i*, when we see the realization of X_i, we have to immediately and irrevocably decide whether to
 - **(1)** select X_i and stop, or
 - 2 ignore X_i and continue to the next step.

- We are given *n* non-negative random variables X_1, \ldots, X_n and their distributions D_1, \ldots, D_n . We see a realization from each X_i in *adversarial order*.
- At every step i, when we see the realization of X_i , we have to immediately and irrevocably decide whether to

 - **2** ignore X_i and continue to the next step.
- We want to select the highest possible value, and compare against $X^* = \max_{1 \le i \le n} X_i$ on expectation.

- We are given *n* non-negative random variables X_1, \ldots, X_n and their distributions D_1, \ldots, D_n . We see a realization from each X_i in *adversarial order*.
- At every step i, when we see the realization of X_i , we have to immediately and irrevocably decide whether to
 - **(1)** select X_i and stop, or
 - 2 ignore X_i and continue to the next step.
- We want to select the highest possible value, and compare against $X^* = \max_{1 \le i \le n} X_i$ on expectation.
- There exists an algorithm which selects a value V such that $\mathbb{E}[V] \geq \frac{1}{2} \mathbb{E}[X^*]$, and no algorithm can achieve better competitive ratio [KS77].

Prophet Inequality Problem (2/2)

VL (UIUC)

Intro to Prophet Inequalities

October 5th, 2020 6 / 38

Image: A matrix and a matrix

æ

$\mathcal{A}_{\mathcal{T}}$: "Fixed-Threshold" Algorithm

Select a threshold T based on D_1, \ldots, D_n , and accept the first $X_i \ge T$.

$\mathcal{A}_{\mathcal{T}}$: "Fixed-Threshold" Algorithm

Select a threshold T based on D_1, \ldots, D_n , and accept the first $X_i \ge T$.

• Select T = median of the distribution of X^* , i.e. $\Pr[X^* \ge T] = \frac{1}{2}$ (assuming no point mass on T) [Sam84].

$\mathcal{A}_{\mathcal{T}}$: "Fixed-Threshold" Algorithm

Select a threshold T based on D_1, \ldots, D_n , and accept the first $X_i \ge T$.

- Select T = median of the distribution of X^* , i.e. $\Pr[X^* \ge T] = \frac{1}{2}$ (assuming no point mass on T) [Sam84].
- Select $T = \frac{1}{2} \mathbb{E}[X^*]$ [KW12].

A Grocer's Dilemma - Posted-Price Mechanisms (1/2)

VL (UIUC)

Image: A matrix

э

• The grocer will set a price for the orange at the beginning of the day. The threshold *T* corresponds to the price posted on the orange by the grocer. At this point, the grocer might as well leave the shop.

- The grocer will set a price for the orange at the beginning of the day. The threshold *T* corresponds to the price posted on the orange by the grocer. At this point, the grocer might as well leave the shop.
- The first person who sees the orange and has valuation at least T will buy it.

- The grocer will set a price for the orange at the beginning of the day. The threshold *T* corresponds to the price posted on the orange by the grocer. At this point, the grocer might as well leave the shop.
- The first person who sees the orange and has valuation at least T will buy it.
- Prophet inequalities provide guarantees for *posted-price mechanisms* in online auctions. Crucially, PPMs do not require bidding.

A Grocer's Dilemma - Posted Price Mechanisms (2/2)

VL (UIUC)

Intro to Prophet Inequalities

October 5th, 2020 8 / 38

Image: A matrix

э

• Posted-price mechanisms are

- Posted-price mechanisms are
 - Anonymous: All buyers are offered the same price, regardless of their type distribution.

• Posted-price mechanisms are

- Anonymous: All buyers are offered the same price, regardless of their type distribution.
- Static: The choice of which price to offer which buyer does not change as the mechanism progresses.

Posted-price mechanisms are

- Anonymous: All buyers are offered the same price, regardless of their type distribution.
- Static: The choice of which price to offer which buyer does not change as the mechanism progresses.
- Order-Oblivious: The pricing rule does not depend on the order in which the buyers arrive, and in fact the order can be chosen by an adaptive adversary.

• Posted-price mechanisms are

- Anonymous: All buyers are offered the same price, regardless of their type distribution.
- Static: The choice of which price to offer which buyer does not change as the mechanism progresses.
- Order-Oblivious: The pricing rule does not depend on the order in which the buyers arrive, and in fact the order can be chosen by an adaptive adversary.
- Ex-post Individually Rational: No buyer is worse if they come to the grocery store and see the orange than if they did not participate at all.

Posted-price mechanisms are

- Anonymous: All buyers are offered the same price, regardless of their type distribution.
- Static: The choice of which price to offer which buyer does not change as the mechanism progresses.
- Order-Oblivious: The pricing rule does not depend on the order in which the buyers arrive, and in fact the order can be chosen by an adaptive adversary.
- Ex-post Individually Rational: No buyer is worse if they come to the grocery store and see the orange than if they did not participate at all.
- Strategy-Proof: There is no incentive for buyers to misreport, because we do not even ask them for a bid!

$$\mathbb{E}[V] = T \Pr[X^* \ge T] + \sum_{i=1}^n \Pr[\mathcal{E}_i] \cdot \mathbb{E}[(X_i - T)^+]$$

$$\mathbb{E}[V] = T \Pr[X^* \ge T] + \sum_{i=1}^n \Pr[\mathcal{E}_i] \cdot \mathbb{E}[(X_i - T)^+]$$
$$= T \Pr[X^* \ge T] + \sum_{i=1}^n \Pr\left[\max_{1 \le j \le i-1} X_i < T\right] \cdot \mathbb{E}[(X_i - T)^+]$$

$$\mathbb{E}[V] = T \Pr[X^* \ge T] + \sum_{i=1}^n \Pr[\mathcal{E}_i] \cdot \mathbb{E}[(X_i - T)^+]$$

= $T \Pr[X^* \ge T] + \sum_{i=1}^n \Pr\left[\max_{1 \le j \le i-1} X_i < T\right] \cdot \mathbb{E}[(X_i - T)^+]$
 $\ge T \Pr[X^* \ge T] + \sum_{i=1}^n \Pr[X^* < T] \cdot \mathbb{E}[(X_i - T)^+]$
Proof of the Prophet Inequality

 $\Pr[X^* \ge T] = \frac{1}{2}$. Let \mathcal{E}_i be the event we "reach" the *i*-th random variable.

$$\mathbb{E}[V] = T \Pr[X^* \ge T] + \sum_{i=1}^n \Pr[\mathcal{E}_i] \cdot \mathbb{E}[(X_i - T)^+]$$

$$= T \Pr[X^* \ge T] + \sum_{i=1}^n \Pr\left[\max_{1 \le j \le i-1} X_i < T\right] \cdot \mathbb{E}[(X_i - T)^+]$$

$$\ge T \Pr[X^* \ge T] + \sum_{i=1}^n \Pr[X^* < T] \cdot \mathbb{E}[(X_i - T)^+]$$

$$= \frac{1}{2}T + \frac{1}{2} \mathbb{E}\left[\sum_{i=1}^n (X_i - T)^+\right]$$

Proof of the Prophet Inequality

 $\Pr[X^* \ge T] = \frac{1}{2}$. Let \mathcal{E}_i be the event we "reach" the *i*-th random variable.

$$\mathbb{E}[V] = T \Pr[X^* \ge T] + \sum_{i=1}^n \Pr[\mathcal{E}_i] \cdot \mathbb{E}[(X_i - T)^+]$$

$$= T \Pr[X^* \ge T] + \sum_{i=1}^n \Pr\left[\max_{1 \le j \le i-1} X_i < T\right] \cdot \mathbb{E}[(X_i - T)^+]$$

$$\ge T \Pr[X^* \ge T] + \sum_{i=1}^n \Pr[X^* < T] \cdot \mathbb{E}[(X_i - T)^+]$$

$$= \frac{1}{2}T + \frac{1}{2}\mathbb{E}\left[\sum_{i=1}^n (X_i - T)^+\right]$$

$$\ge \frac{1}{2}T + \frac{1}{2}\mathbb{E}\left[(X^* - T)^+\right]$$

Proof of the Prophet Inequality

 $\Pr[X^* \ge T] = \frac{1}{2}$. Let \mathcal{E}_i be the event we "reach" the *i*-th random variable.

$$\mathbb{E}[V] = T \Pr[X^* \ge T] + \sum_{i=1}^n \Pr[\mathcal{E}_i] \cdot \mathbb{E}[(X_i - T)^+]$$

$$= T \Pr[X^* \ge T] + \sum_{i=1}^n \Pr\left[\max_{1 \le j \le i-1} X_i < T\right] \cdot \mathbb{E}[(X_i - T)^+]$$

$$\ge T \Pr[X^* \ge T] + \sum_{i=1}^n \Pr[X^* < T] \cdot \mathbb{E}[(X_i - T)^+]$$

$$= \frac{1}{2}T + \frac{1}{2}\mathbb{E}\left[\sum_{i=1}^n (X_i - T)^+\right]$$

$$\ge \frac{1}{2}T + \frac{1}{2}\mathbb{E}\left[(X^* - T)^+\right]$$

$$\ge \frac{1}{2}\mathbb{E}[X^*]$$

VL (UIUC)

$\frac{1}{2}$ is Tight

	(1111.0)
VL	(UUUC)

2

イロト イヨト イヨト イヨト

 Consider two random variables X₁ and X₂, where X₁ = 1 deterministically, and X₂ = ¹/_ε w.p. ε and X₂ = 0 w.p. 1 − ε, for some small ε > 0.

э

- Consider two random variables X₁ and X₂, where X₁ = 1 deterministically, and X₂ = ¹/_ε w.p. ε and X₂ = 0 w.p. 1 − ε, for some small ε > 0.
- Every algorithm will receive value 1 on expectation, regardless of which element it picks.

- Consider two random variables X₁ and X₂, where X₁ = 1 deterministically, and X₂ = ¹/_ε w.p. ε and X₂ = 0 w.p. 1 − ε, for some small ε > 0.
- Every algorithm will receive value 1 on expectation, regardless of which element it picks.
- The expected value of the prophet is

$$\mathbb{E}[X^*] = rac{1}{arepsilon} \cdot arepsilon + 1 \cdot (1 - arepsilon) = 2 - arepsilon.$$

Introduction

- The Prophet Inequality Problem
- The Secretary Problem

2 Generalizations and Constraints

- Selecting Multiple Values
- Online Contention Resolution Schemes

3 Variations and Open Problems

VL (UIUC)

イロト イヨト イヨト イヨト

3

• Suppose now that we have no information on the distributions of the buyers. However, we know that they arrive in *random order*.

- Suppose now that we have no information on the distributions of the buyers. However, we know that they arrive in *random order*.
- At every step *i*, we see a value *v_i*, and we have to immediately and irrevocably decide whether to select *v_i* or not.

- Suppose now that we have no information on the distributions of the buyers. However, we know that they arrive in *random order*.
- At every step *i*, we see a value *v_i*, and we have to immediately and irrevocably decide whether to select *v_i* or not.
- Our objective is to maximize the probability with which we select
 v^{*} = max_{1≤i≤n} v_i. We assume distinct values for simplicity. What is
 the optimal strategy?

- Suppose now that we have no information on the distributions of the buyers. However, we know that they arrive in *random order*.
- At every step *i*, we see a value *v_i*, and we have to immediately and irrevocably decide whether to select *v_i* or not.
- Our objective is to maximize the probability with which we select v^{*} = max_{1≤i≤n} v_i. We assume distinct values for simplicity. What is the optimal strategy?
- Simple problem, with an elegant and striking solution.

VL (UIUC)

イロト イヨト イヨト イヨト

3

• When we see v_i , we should never select it if $v_i < \max_{1 \le j \le i-1} v_j$, because then v_i definitely won't be the best overall.

- When we see v_i, we should never select it if v_i < max_{1≤j≤i−1} v_j, because then v_i definitely won't be the best overall.
- Also, the decision whether to accept v_i or not can only depend on {v₁,..., v_i}. These imply that we should reject the first r values, for some r, and accept the first v_i where i > r such that v_i > max_{1≤j≤i−1} v_i.

- When we see v_i, we should never select it if v_i < max_{1≤j≤i−1} v_j, because then v_i definitely won't be the best overall.
- Also, the decision whether to accept v_i or not can only depend on {v₁,..., v_i}. These imply that we should reject the first r values, for some r, and accept the first v_i where i > r such that v_i > max_{1<i<1} v_i.
- Let $r = \frac{n}{2}$ and v_2^* denote the second-highest value. Then,
 - () with probability 1/2, v^* is in the second half of the elements and,
 - 2 with probability 1/2, v_2^* is in the first half of the elements.

- When we see v_i, we should never select it if v_i < max_{1≤j≤i−1} v_j, because then v_i definitely won't be the best overall.
- Also, the decision whether to accept v_i or not can only depend on {v₁,..., v_i}. These imply that we should reject the first r values, for some r, and accept the first v_i where i > r such that v_i > max_{1<j<i-1} v_i.
- Let r = n/2 and v₂* denote the second-highest value. Then,
 with probability 1/2, v* is in the second half of the elements and,
 with probability 1/2, v₂* is in the first half of the elements.
- If that happens, we will select v^* . Therefore, for $r = \frac{n}{2}$,

$$\Pr[v_{\mathsf{sel}} = v^*] \geq \frac{1}{4}.$$

VL (UIUC)

VL (UIUC)

イロト イヨト イヨト イヨト

3

• In fact, the optimal policy is to set $r \approx \frac{n}{e}$. Then, one can show that $\Pr[v_{sel} = v^*] \ge \frac{1}{e}$, and this bound is tight [Lin61; Dyn63].

- In fact, the optimal policy is to set $r \approx \frac{n}{e}$. Then, one can show that $\Pr[v_{sel} = v^*] \ge \frac{1}{e}$, and this bound is tight [Lin61; Dyn63].
- What about our grocer? In this setting, the grocer does not want money, but gives the orange away for free.

- In fact, the optimal policy is to set $r \approx \frac{n}{e}$. Then, one can show that $\Pr[v_{sel} = v^*] \ge \frac{1}{e}$, and this bound is tight [Lin61; Dyn63].
- What about our grocer? In this setting, the grocer does not want money, but gives the orange away for free.
- If we have probability p of giving the orange to the maximum-valued buyer, then this immediately gives a p-competitive algorithm that selects a value v_{sel} such that

$$\mathbb{E}[v_{\mathsf{sel}}] \geq p \cdot v^*.$$

- In fact, the optimal policy is to set $r \approx \frac{n}{e}$. Then, one can show that $\Pr[v_{sel} = v^*] \ge \frac{1}{e}$, and this bound is tight [Lin61; Dyn63].
- What about our grocer? In this setting, the grocer does not want money, but gives the orange away for free.
- If we have probability p of giving the orange to the maximum-valued buyer, then this immediately gives a p-competitive algorithm that selects a value v_{sel} such that

$$\mathbb{E}[v_{\mathsf{sel}}] \geq p \cdot v^*.$$

• The bound of $\frac{1}{e}$ is tight in this case, although the tightness proof does not follow as easily.

2

Introduction

- The Prophet Inequality Problem
- The Secretary Problem

Generalizations and Constraints

- Selecting Multiple Values
- Online Contention Resolution Schemes

3 Variations and Open Problems

k-Prophet (Uniform Matroid)

Image: A matrix and a matrix

2

• Can we derive simple algorithms for more complex settings? A natural generalization is the setting where we can accept up to k values, for a given k.

- Can we derive simple algorithms for more complex settings? A natural generalization is the setting where we can accept up to k values, for a given k.
- For the prophet inequality problem, we compare against $\mathbb{E}\left[\max_{S:|S| \le k} \sum_{i \in S} X_i\right]$. For this setting, we differentiate between "fixed-threshold" and "adaptive-threshold" algorithms.

- Can we derive simple algorithms for more complex settings? A natural generalization is the setting where we can accept up to k values, for a given k.
- For the prophet inequality problem, we compare against $\mathbb{E}\left[\max_{S:|S| \le k} \sum_{i \in S} X_i\right]$. For this setting, we differentiate between "fixed-threshold" and "adaptive-threshold" algorithms.

\mathcal{A} : "Adaptive-Threshold" Algorithm

For every $i \in [n]$, at step *i*, set a threshold T_i , based on D_1, \ldots, D_n and X_1, \ldots, X_{i-1} , and accept every $X_i \geq T_i$ until we have selected *k* values.

æ

< □ > < 同 >

• One can give a simple fixed-threshold algorithm for this setting, which achieves a $1 - O\left(\sqrt{\frac{\log k}{k}}\right)$ -competitive ratio.

- One can give a simple fixed-threshold algorithm for this setting, which achieves a $1 O\left(\sqrt{\frac{\log k}{k}}\right)$ -competitive ratio.
- Idea: Select a threshold T such that the expected number of values $\geq T$ are $k \delta$ for some δ .

- One can give a simple fixed-threshold algorithm for this setting, which achieves a $1 O\left(\sqrt{\frac{\log k}{k}}\right)$ -competitive ratio.
- Idea: Select a threshold T such that the expected number of values $\geq T$ are $k \delta$ for some δ .
- Since the realizations of the X_i 's are independent, for an appropriately chosen δ , one can show that the number of realizations that are at least T are between $k 2\delta$ and k, with high probability (Hoeffding bound).

- One can give a simple fixed-threshold algorithm for this setting, which achieves a $1 O\left(\sqrt{\frac{\log k}{k}}\right)$ -competitive ratio.
- Idea: Select a threshold T such that the expected number of values $\geq T$ are $k \delta$ for some δ .
- Since the realizations of the X_i 's are independent, for an appropriately chosen δ , one can show that the number of realizations that are at least T are between $k 2\delta$ and k, with high probability (Hoeffding bound).
- For fixed realizations, let $S_T = \{i \in [n] \mid X_i \ge T\}$. Then

$$\sum_{i\in S_T} X_i = \sum_{i\in S_T} T + (X_i - T) = T \cdot |S_T| + \sum_{i\in S_T} (X_i - T).$$

- One can give a simple fixed-threshold algorithm for this setting, which achieves a $1 O\left(\sqrt{\frac{\log k}{k}}\right)$ -competitive ratio.
- Idea: Select a threshold T such that the expected number of values $\geq T$ are $k \delta$ for some δ .
- Since the realizations of the X_i 's are independent, for an appropriately chosen δ , one can show that the number of realizations that are at least T are between $k 2\delta$ and k, with high probability (Hoeffding bound).
- For fixed realizations, let $S_T = \{i \in [n] \mid X_i \ge T\}$. Then

$$\sum_{i\in S_T} X_i = \sum_{i\in S_T} T + (X_i - T) = T \cdot |S_T| + \sum_{i\in S_T} (X_i - T).$$

• For $\delta = \sqrt{2k \log k}$, we get

$$\sum_{i\in S_{\mathcal{T}}} X_i \geq \left(1 - \sqrt{\frac{8\log k}{k}}\right) OPT.$$

VL (UIUC)

Image: A matched by the second sec

æ

Adaptive-Threshold Algorithms

• One can get a better competitive ratio via an adaptive-threshold algorithm. The best known bound is $1 - \frac{1}{\sqrt{k+3}}$ [Ala14], and is asymptotically tight.
Adaptive-Threshold Algorithms

- One can get a better competitive ratio via an adaptive-threshold algorithm. The best known bound is $1 \frac{1}{\sqrt{k+3}}$ [Ala14], and is asymptotically tight.
- For the secretary problem, [Kle05] showed that we can get a $1 O\left(\frac{1}{\sqrt{k}}\right)$ competitive ratio, and this is also asymptotically tight.

Adaptive-Threshold Algorithms

- One can get a better competitive ratio via an adaptive-threshold algorithm. The best known bound is $1 \frac{1}{\sqrt{k+3}}$ [Ala14], and is asymptotically tight.
- For the secretary problem, [Kle05] showed that we can get a $1 O\left(\frac{1}{\sqrt{k}}\right)$ competitive ratio, and this is also asymptotically tight.
- The upper bound is obtained using a recursive algorithm. It first partitions the sequence into an initial segment and final segment of approximately equal length.

- One can get a better competitive ratio via an adaptive-threshold algorithm. The best known bound is $1 \frac{1}{\sqrt{k+3}}$ [Ala14], and is asymptotically tight.
- For the secretary problem, [Kle05] showed that we can get a $1 O\left(\frac{1}{\sqrt{k}}\right)$ competitive ratio, and this is also asymptotically tight.
- The upper bound is obtained using a recursive algorithm. It first partitions the sequence into an initial segment and final segment of approximately equal length.
- Then, it recursively chooses at most $\frac{k}{2}$ elements from the initial segment, and sets a threshold value equal to the $\frac{k}{2}$ -th largest element of the initial segment.

- One can get a better competitive ratio via an adaptive-threshold algorithm. The best known bound is $1 \frac{1}{\sqrt{k+3}}$ [Ala14], and is asymptotically tight.
- For the secretary problem, [Kle05] showed that we can get a $1 O\left(\frac{1}{\sqrt{k}}\right)$ competitive ratio, and this is also asymptotically tight.
- The upper bound is obtained using a recursive algorithm. It first partitions the sequence into an initial segment and final segment of approximately equal length.
- Then, it recursively chooses at most $\frac{k}{2}$ elements from the initial segment, and sets a threshold value equal to the $\frac{k}{2}$ -th largest element of the initial segment.
- Finally, it chooses all elements of the final segment that meet this threshold until exhausting its *k* allotted choices.

Introduction

- The Prophet Inequality Problem
- The Secretary Problem

2 Generalizations and Constraints

- Selecting Multiple Values
- Online Contention Resolution Schemes

3 Variations and Open Problems

VL (UIUC)

• • • • • • • •

2

We can generalize our problems even further by requiring the selected r.v.'s to be independent with respect to a constraint family
 F = ([*n*], *I*). Here, we compare against ℝ [max_{S∈I} ∑_{i∈S} X_i] in the prophet inequality setting.

- We can generalize our problems even further by requiring the selected r.v.'s to be independent with respect to a constraint family
 F = ([*n*], *I*). Here, we compare against ℝ [max_{S∈I} ∑_{i∈S} X_i] in the prophet inequality setting.
- A natural case to consider is when \mathcal{F} is a matroid on [n]. This is the first setting for which our problems differ significantly (as of yet).

- We can generalize our problems even further by requiring the selected r.v.'s to be independent with respect to a constraint family
 F = ([*n*], *I*). Here, we compare against E [max_{S∈I} ∑_{i∈S} X_i] in the prophet inequality setting.
- A natural case to consider is when \mathcal{F} is a matroid on [n]. This is the first setting for which our problems differ significantly (as of yet).
- [KW12] showed that there exists an (adaptive-threshold) algorithm for the *Matroid Prophet Inequality Problem* which matches the $\frac{1}{2}$ -competitive ratio of the single-item case!

- We can generalize our problems even further by requiring the selected r.v.'s to be independent with respect to a constraint family
 F = ([*n*], *I*). Here, we compare against E [max_{S∈I} ∑_{i∈S} X_i] in the prophet inequality setting.
- A natural case to consider is when \mathcal{F} is a matroid on [n]. This is the first setting for which our problems differ significantly (as of yet).
- [KW12] showed that there exists an (adaptive-threshold) algorithm for the *Matroid Prophet Inequality Problem* which matches the $\frac{1}{2}$ -competitive ratio of the single-item case!
- In contrast, no constant-competitive algorithm is known for the *Matroid Secretary Problem* as of yet. The best known algorithm gives a $O\left(\frac{1}{\log \log r}\right)$ -competitive ratio, where *r* is the rank of the matroid [Lac14; FSZ18].

General Constraints

VL (UIUC)

• • • • • • • •

2

• How to generalize to different types or combinations of constraints?

- How to generalize to different types or combinations of constraints?
- Idea: Find a function g that is an upper bound on *OPT*. Model the problem as an LP

$$\begin{array}{ll} \max & g(\boldsymbol{y}) \\ \text{s.t.} & \boldsymbol{y} \in \mathcal{P}_{\mathcal{I}} \quad (LP) \\ & \boldsymbol{y} \geq 0 \end{array}$$

where $\mathcal{P}_{\mathcal{I}}$ is a convex relaxation of \mathcal{I} .

- How to generalize to different types or combinations of constraints?
- Idea: Find a function g that is an upper bound on *OPT*. Model the problem as an LP

$$\begin{array}{ll} \max & g(\boldsymbol{y}) \\ \text{s.t.} & \boldsymbol{y} \in \mathcal{P}_{\mathcal{I}} \quad (LP) \\ & \boldsymbol{y} \geq 0 \end{array}$$

where $\mathcal{P}_{\mathcal{I}}$ is a convex relaxation of \mathcal{I} .

• Solving (LP) yields a fractional point **x**, which we want to round, subject to our constraints \mathcal{F} , but also in an online fashion.

Contention Resolution Schemes

VL (UIUC)

< 行

э

Contention Resolution Scheme (informally) [CVZ11]

A (b, c)-balanced *Contention Resolution Scheme* (*CRS*) is a procedure which receives a point $\mathbf{x} \in b \cdot \mathcal{P}_{\mathcal{I}}$ as input and returns a set $S \in \mathcal{I}$ which contains every $i \in [n]$ with probability at least $c \cdot x_i$.

Contention Resolution Scheme (informally) [CVZ11]

A (b, c)-balanced *Contention Resolution Scheme* (*CRS*) is a procedure which receives a point $\mathbf{x} \in b \cdot \mathcal{P}_{\mathcal{I}}$ as input and returns a set $S \in \mathcal{I}$ which contains every $i \in [n]$ with probability at least $c \cdot x_i$.

• This guarantee yields a *bc*-approximation w.r.t. *OPT*_{LP}, and thus also *OPT*.

Contention Resolution Scheme (informally) [CVZ11]

A (b, c)-balanced *Contention Resolution Scheme* (*CRS*) is a procedure which receives a point $\mathbf{x} \in b \cdot \mathcal{P}_{\mathcal{I}}$ as input and returns a set $S \in \mathcal{I}$ which contains every $i \in [n]$ with probability at least $c \cdot x_i$.

- This guarantee yields a *bc*-approximation w.r.t. *OPT*_{LP}, and thus also *OPT*.
- While CRSs are great, they are of no help for our problems, since we want to round the x_i's in an online fashion.

Online Contention Resolution Schemes

VL (UIUC)

э

• Surprisingly, this can be done with little loss in the approximation guarantees via Online Contention Resolution Schemes (OCRSs) [FSZ16]!.

- Surprisingly, this can be done with little loss in the approximation guarantees via Online Contention Resolution Schemes (OCRSs) [FSZ16]!.
- Essentially, an OCRSs that gives an α -approximation w.r.t. OPT_{LP} for a constraint \mathcal{F} , yields an equivalent α -competitive algorithm for the prophet inequality problem w.r.t. \mathcal{F} .

Online Contention Resolution Schemes

VL (UIUC)

э

• OCRSs (and CRSs) exist for matroids, matchings, knapsacks, etc.

- OCRSs (and CRSs) exist for matroids, matchings, knapsacks, etc.
- They are nice because we can combine them to obtain OCRSs for more complicated constraints.

- OCRSs (and CRSs) exist for matroids, matchings, knapsacks, etc.
- They are nice because we can combine them to obtain OCRSs for more complicated constraints.
- Recently, prophet inequalities have been used to give optimal OCRSs for simple settings, implying the connection between the two is deeper.

Introduction

- The Prophet Inequality Problem
- The Secretary Problem

Generalizations and Constraints

- Selecting Multiple Values
- Online Contention Resolution Schemes

3 Variations and Open Problems

VL (UIUC)

< 47 ▶

э

• What if we could get the best of both worlds?

- What if we could get the best of both worlds?
- In the Prophet Secretary Problem, we are given n non-negative random variables X_1, \ldots, X_n and their distributions D_1, \ldots, D_n , and we observe a realization from each X_i in random order.

- What if we could get the best of both worlds?
- In the Prophet Secretary Problem, we are given *n* non-negative random variables X_1, \ldots, X_n and their distributions D_1, \ldots, D_n , and we observe a realization from each X_i in random order.
- Can we do better than ¹/₂? In fact, yes! [Esf+15] showed that there exists a 1 ¹/_e-competitive algorithm, and recently, a 1 ¹/_e + d-competitive algorithm was discovered for some small constant d > 0 [ACK17; CSZ18].

- What if we could get the best of both worlds?
- In the Prophet Secretary Problem, we are given n non-negative random variables X_1, \ldots, X_n and their distributions D_1, \ldots, D_n , and we observe a realization from each X_i in random order.
- Can we do better than ¹/₂? In fact, yes! [Esf+15] showed that there exists a 1 ¹/_e-competitive algorithm, and recently, a 1 ¹/_e + d-competitive algorithm was discovered for some small constant d > 0 [ACK17; CSZ18].
- What if we knew that all random variables in the prophet inequality setting were i.i.d.? Clearly the optimal bound in this case is not worse than the prophet secretary problem.

- What if we could get the best of both worlds?
- In the Prophet Secretary Problem, we are given n non-negative random variables X_1, \ldots, X_n and their distributions D_1, \ldots, D_n , and we observe a realization from each X_i in random order.
- Can we do better than ¹/₂? In fact, yes! [Esf+15] showed that there exists a 1 ¹/_e-competitive algorithm, and recently, a 1 ¹/_e + d-competitive algorithm was discovered for some small constant d > 0 [ACK17; CSZ18].
- What if we knew that all random variables in the prophet inequality setting were i.i.d.? Clearly the optimal bound in this case is not worse than the prophet secretary problem.
- [Cor+17] showed that the optimal ratio is \approx 0.7451, and is actually tight.

General Objectives

VL (UIUC)

3

• • • • • • • •

2

Other objective functions have been considered as well. In these settings, the objective is to select a set S ∈ I (for some constraint family F) to maximize E [f(S)], and we compare against E [max_{T∈I} f(T)].

- Other objective functions have been considered as well. In these settings, the objective is to select a set S ∈ I (for some constraint family F) to maximize E [f(S)], and we compare against E [max_{T∈I} f(T)].
- When f is a submodular function, we can use OCRSs and obtain constant-competitive algorithms for the Submodular Prophet Inequality Problem [RS16]. More general functions (e.g. monotone subadditive) have been studied as well [Rub16; RS16].
- Other objective functions have been considered as well. In these settings, the objective is to select a set S ∈ I (for some constraint family F) to maximize E [f(S)], and we compare against E [max_{T∈I} f(T)].
- When f is a submodular function, we can use OCRSs and obtain constant-competitive algorithms for the Submodular Prophet Inequality Problem [RS16]. More general functions (e.g. monotone subadditive) have been studied as well [Rub16; RS16].
- Furthermore, when f is a submodular function, [FZ18] showed that any α -competitive algorithm for the Matroid Secretary Problem yields a O (α)-competitive algorithm for the *Submodular Matroid Secretary Problem*.

VL (UIUC)

-

• • • • • • • •

æ

- **(**) Constant-competitive algorithm for the Matroid Secretary Problem.
- Is there a deeper connection between OCRSs and prophet inequalities?

- Constant-competitive algorithm for the Matroid Secretary Problem.
- Is there a deeper connection between OCRSs and prophet inequalities?
- What is the best constant for the Prophet Secretary Problem?

and more ...

QUESTIONS ?

< ∃⇒

• • • • • • • •

æ

VL (UIUC)

Intro to Prophet Inequalities

October 5th, 2020 30 / 38

Image: A matrix

э

- One can give a simple fixed-threshold algorithm for this setting, which achieves a $1 O\left(\sqrt{\frac{\log k}{k}}\right)$ -competitive ratio.
- Idea: Select a threshold T such that the expected number of values $\geq T$ are $k \delta$ for some δ .
- Since the realizations of the X_i 's are independent, for an appropriately chosen δ , one can show that the number of realizations that are at least T are between $k 2\delta$ and k, with high probability (Hoeffding bound).
- For fixed realizations, let $S_T = \{i \in [n] \mid X_i \ge T\}$. Then

$$\sum_{i\in S_T} X_i = \sum_{i\in S_T} T + (X_i - T) = T \cdot |S_T| + \sum_{i\in S_T} (X_i - T).$$

- One can give a simple fixed-threshold algorithm for this setting, which achieves a $1 O\left(\sqrt{\frac{\log k}{k}}\right)$ -competitive ratio.
- Idea: Select a threshold T such that the expected number of values $\geq T$ are $k \delta$ for some δ .
- Since the realizations of the X_i 's are independent, for an appropriately chosen δ , one can show that the number of realizations that are at least T are between $k 2\delta$ and k, with high probability (Hoeffding bound).
- For fixed realizations, let $S_T = \{i \in [n] \mid X_i \ge T\}$. Then

$$\sum_{i\in S_T} X_i = \sum_{i\in S_T} T + (X_i - T) = T \cdot |S_T| + \sum_{i\in S_T} (X_i - T).$$

• Since $|S_T| \ge k - 2\delta$, our revenue is at least $(k - 2\delta)T$.

VL (UIUC)

Intro to Prophet Inequalities

October 5th, 2020 31 / 38

Image: A matrix

э

• Let S^* be the optimal set selected by the prophet. Then

$$OPT = \sum_{i \in S^*} X_i \leq \sum_{i \in S^*} T + (X_i - T) \leq kT + \sum_{i=1}^n (X_i - T),$$

• Let S^* be the optimal set selected by the prophet. Then

$$OPT = \sum_{i \in S^*} X_i \leq \sum_{i \in S^*} T + (X_i - T) \leq kT + \sum_{i=1}^{''} (X_i - T),$$

• Since $|S_{\mathcal{T}}| \leq k$, we accepted every value that was at least \mathcal{T} . Thus

$$\sum_{i \in S_T} (X_i - T) = \sum_{i=1}^n (X_i - T) \ge OPT - kT \ge \frac{k - 2\delta}{k} (OPT - kT)$$
$$= \left(1 - \frac{2\delta}{k}\right) OPT - (k - 2\delta)T.$$

• Let S^* be the optimal set selected by the prophet. Then

$$OPT = \sum_{i \in S^*} X_i \leq \sum_{i \in S^*} T + (X_i - T) \leq kT + \sum_{i=1}^{''} (X_i - T),$$

• Since $|S_{\mathcal{T}}| \leq k$, we accepted every value that was at least \mathcal{T} . Thus

$$\sum_{i \in S_T} (X_i - T) = \sum_{i=1}^n (X_i - T) \ge OPT - kT \ge \frac{k - 2\delta}{k} (OPT - kT)$$
$$= \left(1 - \frac{2\delta}{k}\right) OPT - (k - 2\delta)T.$$

• For $\delta = \sqrt{2k \log k}$, we get

$$\sum_{i \in S_T} X_i \ge \left(1 - \frac{2\delta}{k}\right) OPT = \left(1 - \sqrt{\frac{8\log k}{k}}\right) OPT.$$

VL (UIUC)

References I

Yossi Azar, Ashish Chiplunkar, and Haim Kaplan. "Prophet Secretary: Surpassing the 1-1/e Barrier". In: *CoRR* abs/1711.01834 (2017). arXiv: 1711.01834. URL: http://arxiv.org/abs/1711.01834.

Saeed Alaei. "Bayesian Combinatorial Auctions: Expanding Single Buyer Mechanisms to Many Buyers". In: *SIAM Journal on Computing* 43.2 (2014), pp. 930–972. DOI: 10.1137/120878422. eprint: https://doi.org/10.1137/120878422. URL: https://doi.org/10.1137/120878422.

José Correa et al. "Posted Price Mechanisms for a Random Stream of Customers". In: *Proceedings of the 2017 ACM Conference on Economics and Computation*. EC '17. Cambridge, Massachusetts, USA: ACM, 2017, pp. 169–186. ISBN: 978-1-4503-4527-9. DOI: 10.1145/3033274.3085137. URL: http://doi.acm.org/10.1145/3033274.3085137.

References II

José R. Correa, Raimundo Saona, and Bruno Ziliotto. "Prophet Secretary Through Blind Strategies". In: *CoRR* abs/1807.07483 (2018). arXiv: 1807.07483. URL: http://arxiv.org/abs/1807.07483. Chandra Chekuri, Jan Vondrák, and Rico Zenklusen.

"Submodular Function Maximization via the Multilinear Relaxation and Contention Resolution Schemes". In:

Proceedings of the Forty-third Annual ACM Symposium on Theory of Computing. STOC '11. San Jose, California, USA: ACM, 2011, pp. 783–792. ISBN: 978-1-4503-0691-1. DOI: 10.1145/1993636.1993740. URL: http://doi.acm.org/10.1145/1993636.1993740.

E. B. Dynkin. "The optimum choice of the instant for stopping a Markov process". In: *Soviet Math. Dokl* 4 (1963).

Hossein Esfandiari et al. "Prophet Secretary". In: *CoRR* abs/1507.01155 (2015). arXiv: 1507.01155. URL: http://arxiv.org/abs/1507.01155.

Moran Feldman, Ola Svensson, and Rico Zenklusen. "Online Contention Resolution Schemes". In: *Proceedings of the Twenty-seventh Annual ACM-SIAM Symposium on Discrete Algorithms*. SODA '16. Arlington, Virginia: Society for Industrial and Applied Mathematics, 2016, pp. 1014–1033. ISBN: 978-1-611974-33-1. URL:

http://dl.acm.org/citation.cfm?id=2884435.2884507.

Moran Feldman, Ola Svensson, and Rico Zenklusen. "A Simple O(log log(rank))-Competitive Algorithm for the Matroid Secretary Problem". In: *Mathematics of Operations Research* 43.2 (2018), pp. 638–650. DOI: 10.1287/moor.2017.0876. eprint: https://doi.org/10.1287/moor.2017.0876. URL: https://doi.org/10.1287/moor.2017.0876.

Moran Feldman and Rico Zenklusen. "The Submodular Secretary Problem Goes Linear". In: *SIAM Journal on Computing* 47.2 (2018), pp. 330–366. DOI: 10.1137/16M1105220. eprint: https://doi.org/10.1137/16M1105220. URL: https://doi.org/10.1137/16M1105220.

References V

Robert Kleinberg. "A Multiple-Choice Secretary Algorithm with Applications to Online Auctions". In: *Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms*. SODA '05. Vancouver, British Columbia: Society for Industrial and Applied Mathematics, USA, 2005, pp. 630–631. ISBN: 0898715857.

Ulrich Krengel and Louis Sucheston. "Semiamarts and finite values". In: *Bull. Amer. Math. Soc.* 83.4 (July 1977), pp. 745–747. URL: https://projecteuclid.org:443/euclid.bams/1183538915.

Robert Kleinberg and S. Matthew Weinberg. "Matroid Prophet Inequalities". In: *CoRR* abs/1201.4764 (2012). arXiv: 1201.4764. URL: http://arxiv.org/abs/1201.4764.

- O. Lachish. "O(log log Rank) Competitive Ratio for the Matroid Secretary Problem". In: 2014 IEEE 55th Annual Symposium on Foundations of Computer Science. 2014, pp. 326–335.
- D. V. Lindley. "Dynamic Programming and Decision Theory". In: Journal of the Royal Statistical Society. Series C (Applied Statistics) 10.1 (1961), pp. 39–51. ISSN: 00359254, 14679876. URL: http://www.jstor.org/stable/2985407.
- Aviad Rubinstein and Sahil Singla. "Combinatorial Prophet Inequalities". In: *CoRR* abs/1611.00665 (2016). arXiv: 1611.00665. URL: http://arxiv.org/abs/1611.00665.

Aviad Rubinstein. "Beyond Matroids: Secretary Problem and Prophet Inequality with General Constraints". In: *Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing*. New York, NY, USA: Association for Computing Machinery, 2016, pp. 324–332. ISBN: 9781450341325. URL: https://doi.org/10.1145/2897518.2897540.

Ester Samuel-Cahn. "Comparison of Threshold Stop Rules and Maximum for Independent Nonnegative Random Variables". In: *The Annals of Probability* 12.4 (1984), pp. 1213–1216. ISSN: 00911798. URL: http://www.jstor.org/stable/2243359.