
Prophet Inequalities and Online Combinatorial
Optimization

Vasilis Livanos

Theory Group
Department of Computer Science

livanos3@illinois.edu

April 21th, 2022

Prophet Inequalities and Online Combinatorial Optimization April 21th, 2022 1 / 38



Overview

1 Prophets and Secretaries
The Secretary Problem
The Prophet Inequality Problem
Selecting Multiple Values

2 Online Combinatorial Optimization
Primer on Mathematical Programming
Online Contention Resolution Schemes

3 Equivalence via LP Duality

4 Variations and Open Problems

Prophet Inequalities and Online Combinatorial Optimization April 21th, 2022 2 / 38



Secretary Problem (1/3)

Consider n values v1, . . . , vn ∈ R arriving in random order.
Step i : See value vi , immediately and irrevocably decide:

Select vi , or
Skip.

Objective: Maximize Pr [We select v∗], where v∗ = max1≤i≤n vi .
Optimal strategy?
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Secretary Problem (2/3)

Never select vi if vi < max1≤j≤i−1 vj , because then certainly vi ̸= v∗.
Decision at step i can only depend on {v1, . . . , vi}.

=⇒ Reject first r values, for some r .
For i > r , accept first vi s.t. vi > max1≤j≤i−1 vi .
Example: Let r = n

2 and v∗
2 be the second-highest value. Then,

1 w.p. 1/2, v∗

2 w.p. 1/2, v∗
2

In this case, we select v∗. Thus, for r = n
2 ,

Pr [We select v∗] ≥ 1
4 .

Optimal strategy: r ≈ n
e . Then, Pr [We select v∗] ≥ 1

e , and this bound
is tight [Lin61; Dyn63].
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Prophet Inequality Problem (1/4)

Non-random order?
Adversarial order + Arbitrary values =⇒ Pr [We select v∗] arbitrarily
small.
Assume adversarial order, but vi ∼ Di , where Di is known =⇒
Prophet Inequality Problem.
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Prophet Inequality Problem (2/4)

Given n r.v.’s X1, . . . , Xn ∼ D1, . . . , Dn. We see independent
realizations of Xi ’s in adversarial order.
Step i : immediately and irrevocably decide

1 select realization of Xi and stop, or
2 ignore realization of Xi and continue to step i + 1.

Compare against E [maxn
i=1 Xi ].

∃ algorithm s.t. E[ALG] ≥ 1
2 E [maxn

i=1 Xi ], and no algorithm can
achieve better competitive ratio [KS77].
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Let’s Play: Prophet Inequality Problem (3/4)

X1 = 2.74
X2 = 3.75
X3 = 2.81
X4 = 5.66
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Prophet Inequality Problem (4/4)

Simple problem in optimal stopping theory. ∃ many algorithms for
1/2-competitive ratio.

AT : “Fixed-Threshold” Algorithm
Set threshold T based on D1, . . . , Dn. Accept the first Xi ≥ T .

What threshold to set?
1 Set T = median of the distribution of X ∗, i.e. Pr[X ∗ ≥ T ] = 1

2
(assuming no point mass on T ) [Sam84].

2 Set T = 1
2 E[X ∗] [KW12].

Prophet Inequalities and Online Combinatorial Optimization April 21th, 2022 8 / 38



Prophet Inequality Problem (4/4)

Simple problem in optimal stopping theory. ∃ many algorithms for
1/2-competitive ratio.

AT : “Fixed-Threshold” Algorithm
Set threshold T based on D1, . . . , Dn. Accept the first Xi ≥ T .

What threshold to set?
1 Set T = median of the distribution of X ∗, i.e. Pr[X ∗ ≥ T ] = 1

2
(assuming no point mass on T ) [Sam84].

2 Set T = 1
2 E[X ∗] [KW12].

Prophet Inequalities and Online Combinatorial Optimization April 21th, 2022 8 / 38



Prophet Inequality Problem (4/4)

Simple problem in optimal stopping theory. ∃ many algorithms for
1/2-competitive ratio.

AT : “Fixed-Threshold” Algorithm
Set threshold T based on D1, . . . , Dn. Accept the first Xi ≥ T .

What threshold to set?

1 Set T = median of the distribution of X ∗, i.e. Pr[X ∗ ≥ T ] = 1
2

(assuming no point mass on T ) [Sam84].
2 Set T = 1

2 E[X ∗] [KW12].

Prophet Inequalities and Online Combinatorial Optimization April 21th, 2022 8 / 38



Prophet Inequality Problem (4/4)

Simple problem in optimal stopping theory. ∃ many algorithms for
1/2-competitive ratio.

AT : “Fixed-Threshold” Algorithm
Set threshold T based on D1, . . . , Dn. Accept the first Xi ≥ T .

What threshold to set?
1 Set T = median of the distribution of X ∗, i.e. Pr[X ∗ ≥ T ] = 1

2
(assuming no point mass on T ) [Sam84].

2 Set T = 1
2 E[X ∗] [KW12].

Prophet Inequalities and Online Combinatorial Optimization April 21th, 2022 8 / 38



Prophet Inequality Problem (4/4)

Simple problem in optimal stopping theory. ∃ many algorithms for
1/2-competitive ratio.

AT : “Fixed-Threshold” Algorithm
Set threshold T based on D1, . . . , Dn. Accept the first Xi ≥ T .

What threshold to set?
1 Set T = median of the distribution of X ∗, i.e. Pr[X ∗ ≥ T ] = 1

2
(assuming no point mass on T ) [Sam84].

2 Set T = 1
2 E[X ∗] [KW12].

Prophet Inequalities and Online Combinatorial Optimization April 21th, 2022 8 / 38



Proof of the Prophet Inequality
Pr[X ∗ ≥ T ] = 1

2 . Let Ei be the event we “reach” the i-th random variable.

E[ALG] = T Pr[X ∗ ≥ T ] +
n∑

i=1
Pr[Ei ] · E[(Xi − T )+]

= T Pr[X ∗ ≥ T ] +
n∑

i=1
Pr

[
max

1≤j≤i−1
Xi < T

]
· E[(Xi − T )+]

≥ T Pr[X ∗ ≥ T ] +
n∑

i=1
Pr[X ∗ < T ] · E[(Xi − T )+]

= 1
2T + 1

2 E

[ n∑
i=1

(Xi − T )+
]

≥ 1
2T + 1

2 E
[
(X ∗ − T )+]

≥ 1
2 E[X ∗]
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1
2 is Tight

Consider X1 and X2, where

X1 = 1 w.p. 1, and X2 =
{1

ε w.p. ε

0 w.p. 1 − ε
,

for some small ε > 0.
For every algorithm, E [ALG] = 1, regardless of which element it picks.
Expected value of the prophet is

E[X ∗] = 1
ε

· ε + 1 · (1 − ε) = 2 − ε.

Prophet Inequalities and Online Combinatorial Optimization April 21th, 2022 10 / 38



1
2 is Tight

Consider X1 and X2, where

X1 = 1 w.p. 1, and X2 =
{1

ε w.p. ε

0 w.p. 1 − ε
,

for some small ε > 0.

For every algorithm, E [ALG] = 1, regardless of which element it picks.
Expected value of the prophet is

E[X ∗] = 1
ε

· ε + 1 · (1 − ε) = 2 − ε.

Prophet Inequalities and Online Combinatorial Optimization April 21th, 2022 10 / 38



1
2 is Tight

Consider X1 and X2, where

X1 = 1 w.p. 1, and X2 =
{1

ε w.p. ε

0 w.p. 1 − ε
,

for some small ε > 0.
For every algorithm, E [ALG] = 1, regardless of which element it picks.

Expected value of the prophet is

E[X ∗] = 1
ε

· ε + 1 · (1 − ε) = 2 − ε.

Prophet Inequalities and Online Combinatorial Optimization April 21th, 2022 10 / 38



1
2 is Tight

Consider X1 and X2, where

X1 = 1 w.p. 1, and X2 =
{1

ε w.p. ε

0 w.p. 1 − ε
,

for some small ε > 0.
For every algorithm, E [ALG] = 1, regardless of which element it picks.
Expected value of the prophet is

E[X ∗] = 1
ε

· ε + 1 · (1 − ε) = 2 − ε.

Prophet Inequalities and Online Combinatorial Optimization April 21th, 2022 10 / 38



k-Prophet

Natural generalization: Accept ≤ k values, for given k.
Compare against OPT = E

[
maxS:|S|≤k

∑
i∈S Xi

]
.

We differentiate between fixed-threshold and adaptive-threshold
algorithms.

A: Adaptive-Threshold Algorithm
∀i ∈ [n], at step i , set threshold Ti , based on D1, . . . , Dn and X1, . . . , Xi−1.
Accept every Xi ≥ Ti until k values selected.

Prophet Inequalities and Online Combinatorial Optimization April 21th, 2022 11 / 38



k-Prophet

Natural generalization: Accept ≤ k values, for given k.

Compare against OPT = E
[
maxS:|S|≤k

∑
i∈S Xi

]
.

We differentiate between fixed-threshold and adaptive-threshold
algorithms.

A: Adaptive-Threshold Algorithm
∀i ∈ [n], at step i , set threshold Ti , based on D1, . . . , Dn and X1, . . . , Xi−1.
Accept every Xi ≥ Ti until k values selected.

Prophet Inequalities and Online Combinatorial Optimization April 21th, 2022 11 / 38



k-Prophet

Natural generalization: Accept ≤ k values, for given k.
Compare against OPT = E

[
maxS:|S|≤k

∑
i∈S Xi

]
.

We differentiate between fixed-threshold and adaptive-threshold
algorithms.

A: Adaptive-Threshold Algorithm
∀i ∈ [n], at step i , set threshold Ti , based on D1, . . . , Dn and X1, . . . , Xi−1.
Accept every Xi ≥ Ti until k values selected.

Prophet Inequalities and Online Combinatorial Optimization April 21th, 2022 11 / 38



k-Prophet

Natural generalization: Accept ≤ k values, for given k.
Compare against OPT = E

[
maxS:|S|≤k

∑
i∈S Xi

]
.

We differentiate between fixed-threshold and adaptive-threshold
algorithms.

A: Adaptive-Threshold Algorithm
∀i ∈ [n], at step i , set threshold Ti , based on D1, . . . , Dn and X1, . . . , Xi−1.
Accept every Xi ≥ Ti until k values selected.

Prophet Inequalities and Online Combinatorial Optimization April 21th, 2022 11 / 38



k-Prophet

Natural generalization: Accept ≤ k values, for given k.
Compare against OPT = E

[
maxS:|S|≤k

∑
i∈S Xi

]
.

We differentiate between fixed-threshold and adaptive-threshold
algorithms.

A: Adaptive-Threshold Algorithm
∀i ∈ [n], at step i , set threshold Ti , based on D1, . . . , Dn and X1, . . . , Xi−1.
Accept every Xi ≥ Ti until k values selected.
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Fixed-Threshold Algorithm for k-Prophet

Simple fixed-threshold algorithm: 1 − O
(√

log k
k

)
-competitive ratio.

Idea: Set threshold T s.t. E [|Xi ≥ T |] = k − δ for some δ.
Use Hoeffding bound to show that, for δ =

√
2k log k, w.h.p.

k − 2δ ≤ |Xi ≥ T | ≤ k.

For fixed realizations, let ST = {i ∈ [n] | Xi ≥ T}. Then∑
i∈ST

Xi =
∑
i∈ST

T + (Xi − T ) = T · |ST | +
∑
i∈ST

(Xi − T ).

Simple algebra shows that

E

 ∑
i∈ST

Xi

 ≥
(

1 − 2δ

k

)
OPT =

1 −

√
8 log k

k

 OPT .

Prophet Inequalities and Online Combinatorial Optimization April 21th, 2022 12 / 38



Fixed-Threshold Algorithm for k-Prophet

Simple fixed-threshold algorithm: 1 − O
(√

log k
k

)
-competitive ratio.

Idea: Set threshold T s.t. E [|Xi ≥ T |] = k − δ for some δ.
Use Hoeffding bound to show that, for δ =

√
2k log k, w.h.p.

k − 2δ ≤ |Xi ≥ T | ≤ k.

For fixed realizations, let ST = {i ∈ [n] | Xi ≥ T}. Then∑
i∈ST

Xi =
∑
i∈ST

T + (Xi − T ) = T · |ST | +
∑
i∈ST

(Xi − T ).

Simple algebra shows that

E

 ∑
i∈ST

Xi

 ≥
(

1 − 2δ

k

)
OPT =

1 −

√
8 log k

k

 OPT .

Prophet Inequalities and Online Combinatorial Optimization April 21th, 2022 12 / 38



Fixed-Threshold Algorithm for k-Prophet

Simple fixed-threshold algorithm: 1 − O
(√

log k
k

)
-competitive ratio.

Idea: Set threshold T s.t. E [|Xi ≥ T |] = k − δ for some δ.

Use Hoeffding bound to show that, for δ =
√

2k log k, w.h.p.

k − 2δ ≤ |Xi ≥ T | ≤ k.

For fixed realizations, let ST = {i ∈ [n] | Xi ≥ T}. Then∑
i∈ST

Xi =
∑
i∈ST

T + (Xi − T ) = T · |ST | +
∑
i∈ST

(Xi − T ).

Simple algebra shows that

E

 ∑
i∈ST

Xi

 ≥
(

1 − 2δ

k

)
OPT =

1 −

√
8 log k

k

 OPT .

Prophet Inequalities and Online Combinatorial Optimization April 21th, 2022 12 / 38



Fixed-Threshold Algorithm for k-Prophet

Simple fixed-threshold algorithm: 1 − O
(√

log k
k

)
-competitive ratio.

Idea: Set threshold T s.t. E [|Xi ≥ T |] = k − δ for some δ.
Use Hoeffding bound to show that, for δ =

√
2k log k, w.h.p.

k − 2δ ≤ |Xi ≥ T | ≤ k.

For fixed realizations, let ST = {i ∈ [n] | Xi ≥ T}. Then∑
i∈ST

Xi =
∑
i∈ST

T + (Xi − T ) = T · |ST | +
∑
i∈ST

(Xi − T ).

Simple algebra shows that

E

 ∑
i∈ST

Xi

 ≥
(

1 − 2δ

k

)
OPT =

1 −

√
8 log k

k

 OPT .

Prophet Inequalities and Online Combinatorial Optimization April 21th, 2022 12 / 38



Fixed-Threshold Algorithm for k-Prophet

Simple fixed-threshold algorithm: 1 − O
(√

log k
k

)
-competitive ratio.

Idea: Set threshold T s.t. E [|Xi ≥ T |] = k − δ for some δ.
Use Hoeffding bound to show that, for δ =

√
2k log k, w.h.p.

k − 2δ ≤ |Xi ≥ T | ≤ k.

For fixed realizations, let ST = {i ∈ [n] | Xi ≥ T}. Then∑
i∈ST

Xi =
∑
i∈ST

T + (Xi − T ) = T · |ST | +
∑
i∈ST

(Xi − T ).

Simple algebra shows that

E

 ∑
i∈ST

Xi

 ≥
(

1 − 2δ

k

)
OPT =

1 −

√
8 log k

k

 OPT .

Prophet Inequalities and Online Combinatorial Optimization April 21th, 2022 12 / 38



Fixed-Threshold Algorithm for k-Prophet

Simple fixed-threshold algorithm: 1 − O
(√

log k
k

)
-competitive ratio.

Idea: Set threshold T s.t. E [|Xi ≥ T |] = k − δ for some δ.
Use Hoeffding bound to show that, for δ =

√
2k log k, w.h.p.

k − 2δ ≤ |Xi ≥ T | ≤ k.

For fixed realizations, let ST = {i ∈ [n] | Xi ≥ T}. Then∑
i∈ST

Xi =
∑
i∈ST

T + (Xi − T ) = T · |ST | +
∑
i∈ST

(Xi − T ).

Simple algebra shows that

E

 ∑
i∈ST

Xi

 ≥
(

1 − 2δ

k

)
OPT =

1 −

√
8 log k

k

 OPT .

Prophet Inequalities and Online Combinatorial Optimization April 21th, 2022 12 / 38



Adaptive-Threshold Algorithms

Adaptive-threshold algorithms can do better:
1 − 1√

k+3 [Ala14], is asymptotically tight.
Tight competitive ratio for every k ≥ 1 [JMZ22] (complicated LP
duality argument).

Prophet Inequalities and Online Combinatorial Optimization April 21th, 2022 13 / 38



Adaptive-Threshold Algorithms

Adaptive-threshold algorithms can do better:
1 − 1√

k+3 [Ala14], is asymptotically tight.
Tight competitive ratio for every k ≥ 1 [JMZ22] (complicated LP
duality argument).

Prophet Inequalities and Online Combinatorial Optimization April 21th, 2022 13 / 38



General Feasibility Constraints

Given family F of subsets of [n] - independent sets.
Select set S of r.v.’s to maximize sum of values, subject to S being
independent.
Compare against E [maxS∈F

∑
i∈S Xi ].

Examples:
1 Matroids: Uniform (F = {S ⊆ [n] | |S| ≤ k}), Graphic ([n] → edges,

F → forests), Vector ([n] → vectors, F → lin. ind. vectors), etc.
2 Matchings: Given G = (V , E ), [n] → E and F → matchings in G .
3 Knapsack: Given sizes si ∈ [0, 1] for each Xi ,

F =
{

S ⊆ [n]
∣∣ ∑

i∈S si ≤ 1
}

.

Matroid Prophet Inequality Theorem [KW12]
For every matroid M, ∃ an algorithm for the matroid prophet inequality
problem that returns an independent set S s.t.

E

∑
i∈S

Xi

 ≥ 1
2 · E

max
S∈F

∑
i∈S

Xi

 .
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Overview

1 Prophets and Secretaries
The Secretary Problem
The Prophet Inequality Problem
Selecting Multiple Values

2 Online Combinatorial Optimization
Primer on Mathematical Programming
Online Contention Resolution Schemes

3 Equivalence via LP Duality

4 Variations and Open Problems
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Integer Programs

Given set N of elements, |N| = n, and set function f : 2N → R.
Goal: Optimize function f under constraints.
Arguments of f : Variables.
Examples:

min
∑
i∈N

wixi max
∑

e∈E(G)
wexe

s.t.
∑
i∈N

xi ≥ 1 or s.t.
∑

e∈δ(u)
xe ≤ 1, ∀u ∈ V (G)

xi ∈ {0, 1} , ∀i ∈ N xe ∈ {0, 1} , ∀e ∈ E (G)
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Linear Programs

How to solve IPs? =⇒ Relax constraints to continuous variables.
Most common relaxation of IPs: Linear Program (LP).
Constraint =⇒ Intersection of half-spaces ≡ Convex polytope P.
Examples:

min
∑
i∈N

wixi max
∑

e∈E(G)
wexe

s.t.
∑
i∈N

xi ≥ 1 or s.t.
∑

e∈δ(u)
xe ≤ 1, ∀u ∈ V (G)
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Rounding IPs

max cT x
s.t. Ax ≤ b

x ∈ {0, 1}n
=⇒

max cT x
s.t. Ax ≤ b

x ∈ [0, 1]n
=⇒

=⇒ x∗ optimal solution of LP =⇒ ???

Round x∗ to obtain solution for IP. Non-trivial!
Attempt 1: Independently set y∗

i = 1 w.p. x∗
i , and 0 otherwise.

y∗ may be infeasible!
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CRSs for Combinatorial Optimization

Attempt 2: Independently set y∗
i = 1 w.p. x∗

i . Let
R(x∗) = {i ∈ N | y∗

i = 1}.
R: Set of active elements.
“Drop” elements from R to get S ⊆ R with S ∈ F .

Contention Resolution Scheme (informally) [CVZ11]
A c-selectable Contention Resolution Scheme (CRS) is an algorithm which
receives a point x ∈ P as input and returns an independent set S ∈ F
which contains every i ∈ N with probability at least c · xi .

c-selectable CRS =⇒ c-approximate (integer) solution to a linear f .
c = mini∈N Pr [i ∈ S | i ∈ R].
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Online CRSs

Problem: Round x in specific order - adversarial, random, etc.
Solution: Online Contention Resolution Schemes (OCRSs) [FSZ16]!
Example (Single item): Let R ′ contain every i ∈ R independently w.p.
1/2. ∑

i∈R′

xi = 1
2

∑
i∈R

xi ≤ 1
2 =⇒ R ′ = ∅ w.p. ≥ 1/2.

Pr [i ∈ S | i ∈ R] = Pr
[
i ∈ R ′ ∣∣ i ∈ R

]
· Pr

[
1, . . . , i − 1 /∈ R ′]

≥ Pr
[
i ∈ R ′ ∣∣ i ∈ R

]
· Pr

[
R ′ = ∅

]
= 1

4 .
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Solution: Online Contention Resolution Schemes (OCRSs) [FSZ16]!

Example (Single item): Let R ′ contain every i ∈ R independently w.p.
1/2. ∑
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Optimal OCRS for Single Item

Let qi = Pr [i ∈ R ′ | i ∈ R] and ri = Pr [1, . . . , i − 1 /∈ R ′]. Before,
qi = ri = 1/2, for all i .
Idea: Ensure ri · qi = 1

2 .
Initially, r1 = 1 =⇒ q1 = 1

2 . Notice

ri+1 = ri (1 − qixi) ⇐⇒ ri − ri+1 = riqixi . (1)

Set qi+1 = 1
2ri+1

. Sum up (1) to get

ri+1 = r1 −
i∑

j=1

xi
2 ≥ 1

2 .

Tight: Consider x1 = 1 − ε and x2 = ε for small ε > 0.
Pr [2 ∈ S | 2 ∈ R] = 1 − x1 Pr [1 ∈ S | 1 ∈ R] =
1 − Pr [1 ∈ S | 1 ∈ R] + o (1).
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Greedy OCRSs

Almighty adversary: Knows R in advance + any randomness of our
algorithm.
Idea: Select a priori a subfamily F ′ ⊆ F of feasible sets based on x .
Greedily select i if

1 i ∈ R, and
2 Si−1 + i ∈ F ′.

=⇒ Greedy OCRS.
Previous OCRS not greedy - qi depended on order.
Better than 1/4? Yes! ∃ 1/e-selectable greedy OCRS for single item
and it is tight [Liv21].
Algorithm includes {i} ∈ F ′ w.p. 1−e−xi

xi
. Extends to partition and

transversal matroids.

Prophet Inequalities and Online Combinatorial Optimization April 21th, 2022 22 / 38



Greedy OCRSs

Almighty adversary: Knows R in advance + any randomness of our
algorithm.

Idea: Select a priori a subfamily F ′ ⊆ F of feasible sets based on x .
Greedily select i if

1 i ∈ R, and
2 Si−1 + i ∈ F ′.

=⇒ Greedy OCRS.
Previous OCRS not greedy - qi depended on order.
Better than 1/4? Yes! ∃ 1/e-selectable greedy OCRS for single item
and it is tight [Liv21].
Algorithm includes {i} ∈ F ′ w.p. 1−e−xi

xi
. Extends to partition and

transversal matroids.

Prophet Inequalities and Online Combinatorial Optimization April 21th, 2022 22 / 38



Greedy OCRSs

Almighty adversary: Knows R in advance + any randomness of our
algorithm.
Idea: Select a priori a subfamily F ′ ⊆ F of feasible sets based on x .
Greedily select i if

1 i ∈ R, and
2 Si−1 + i ∈ F ′.

=⇒ Greedy OCRS.

Previous OCRS not greedy - qi depended on order.
Better than 1/4? Yes! ∃ 1/e-selectable greedy OCRS for single item
and it is tight [Liv21].
Algorithm includes {i} ∈ F ′ w.p. 1−e−xi

xi
. Extends to partition and

transversal matroids.

Prophet Inequalities and Online Combinatorial Optimization April 21th, 2022 22 / 38



Greedy OCRSs

Almighty adversary: Knows R in advance + any randomness of our
algorithm.
Idea: Select a priori a subfamily F ′ ⊆ F of feasible sets based on x .
Greedily select i if

1 i ∈ R, and
2 Si−1 + i ∈ F ′.

=⇒ Greedy OCRS.
Previous OCRS not greedy - qi depended on order.

Better than 1/4? Yes! ∃ 1/e-selectable greedy OCRS for single item
and it is tight [Liv21].
Algorithm includes {i} ∈ F ′ w.p. 1−e−xi

xi
. Extends to partition and

transversal matroids.

Prophet Inequalities and Online Combinatorial Optimization April 21th, 2022 22 / 38



Greedy OCRSs

Almighty adversary: Knows R in advance + any randomness of our
algorithm.
Idea: Select a priori a subfamily F ′ ⊆ F of feasible sets based on x .
Greedily select i if

1 i ∈ R, and
2 Si−1 + i ∈ F ′.

=⇒ Greedy OCRS.
Previous OCRS not greedy - qi depended on order.
Better than 1/4? Yes! ∃ 1/e-selectable greedy OCRS for single item
and it is tight [Liv21].

Algorithm includes {i} ∈ F ′ w.p. 1−e−xi
xi

. Extends to partition and
transversal matroids.

Prophet Inequalities and Online Combinatorial Optimization April 21th, 2022 22 / 38



Greedy OCRSs

Almighty adversary: Knows R in advance + any randomness of our
algorithm.
Idea: Select a priori a subfamily F ′ ⊆ F of feasible sets based on x .
Greedily select i if

1 i ∈ R, and
2 Si−1 + i ∈ F ′.

=⇒ Greedy OCRS.
Previous OCRS not greedy - qi depended on order.
Better than 1/4? Yes! ∃ 1/e-selectable greedy OCRS for single item
and it is tight [Liv21].
Algorithm includes {i} ∈ F ′ w.p. 1−e−xi

xi
. Extends to partition and

transversal matroids.

Prophet Inequalities and Online Combinatorial Optimization April 21th, 2022 22 / 38



Overview

1 Prophets and Secretaries
The Secretary Problem
The Prophet Inequality Problem
Selecting Multiple Values

2 Online Combinatorial Optimization
Primer on Mathematical Programming
Online Contention Resolution Schemes

3 Equivalence via LP Duality

4 Variations and Open Problems

Prophet Inequalities and Online Combinatorial Optimization April 21th, 2022 23 / 38



From OCRS to Prophet Inequality

Assume a c-selectable OCRS π for some F . Let
xi = Pr

[
i ∈ arg maxI∈F

∑
j∈I Xj

]
, and

vi(xi) = E [Xi | Xi ’s value is in its top xi quantile] (ex-ante PI).

Then, x ∈ P, and OPT = E
[
maxI∈F

∑
j∈I Xj

]
≤

∑
i∈N xivi(xi).

Algorithm: Run π on x to get S. Accept Xi iff i ∈ S.
π is c-selectable =⇒ E [ALG] ≥ c

∑
i∈N xivi(xi) ≥ c · OPT .

Essentially a reduction to Bernoulli r.v.’s.
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From (ex-ante) Prophet Inequality to OCRS (1/3)

Let Φ be the set of all deterministic online algorithms.

ϕ : 2N × 2N × N → {0, 1} ∈ Φ ⇐⇒ ϕ (A, B, i) = 1

only for B ⊆ A, i /∈ A and B + i ∈ F .
A: Set of elements seen before i .
B: Set of elements selected before i .
ϕ (A, B, i) = 1 =⇒ algorithm selects i .

Let qi ,ϕ = Pr [i ∈ S | ALG = ϕ].

max
λ,c

c min
y ,µ

µ

s.t.
∑
ϕ∈Φ

qi ,ϕλϕ ≥ c · xi ∀i ∈ N s.t.
∑
i∈N

qi ,ϕyi ≤ µ ∀ϕ ∈ Φ

∑
ϕ∈Φ

λϕ = 1
∑
i∈N

xiyi = 1

λϕ ≥ 0 ∀ϕ ∈ Φ yi ≥ 0 ∀i ∈ N
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From (ex-ante) Prophet Inequality to OCRS (2/3)

max
λ,c

c min
y ,µ

µ

s.t.
∑
ϕ∈Φ

qi ,ϕλϕ ≥ c · xi ∀i ∈ N s.t.
∑
i∈N

qi ,ϕyi ≤ µ ∀ϕ ∈ Φ

∑
ϕ∈Φ

λϕ = 1
∑
i∈N

xiyi = 1

λϕ ≥ 0 ∀ϕ ∈ Φ yi ≥ 0 ∀i ∈ N

If Primal has value ≥ c =⇒ ∃c−selectable OCRS.
By strong LP duality, suffices to show Dual has value ≥ c. Show that
∀y ≥ 0 s.t.

∑
i∈N xiyi = 1,

∃ϕ ∈ Φ s.t.
∑
i∈N

qi ,ϕyi ≥ c.
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From (ex-ante) Prophet Inequality to OCRS (3/3)

max
λ,c

c min
y ,µ

µ

s.t.
∑
ϕ∈Φ

qi ,ϕλϕ ≥ c · xi ∀i ∈ N s.t.
∑
i∈N

qi ,ϕyi ≤ µ ∀ϕ ∈ Φ

∑
ϕ∈Φ

λϕ = 1
∑
i∈N

xiyi = 1

λϕ ≥ 0 ∀ϕ ∈ Φ yi ≥ 0 ∀i ∈ N

Consider Bernoulli PI instance where Xi = yi w.p. xi and 0 otherwise.
x ∈ P and

∑
i∈N xiyi = 1 =⇒ Value of ex-ante PI is 1.

Assuming c-competitive (ex-ante) PI =⇒ ∃ϕ ∈ Φ s.t. E [ϕ] ≥ c.
But, E [ϕ] =

∑
i∈N qi ,ϕyi , by linearity of expectation.

Thus,
∑

i∈N qi ,ϕyi ≥ c.
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Overview

1 Prophets and Secretaries
The Secretary Problem
The Prophet Inequality Problem
Selecting Multiple Values

2 Online Combinatorial Optimization
Primer on Mathematical Programming
Online Contention Resolution Schemes

3 Equivalence via LP Duality

4 Variations and Open Problems
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Prophet Secretary and I.I.D. Setting

Prophet Secretary problem: Prophet Inequality problem + random
order. ∃1 − 1

e -competitive algorithm [Esf+15]. ∃1 − 1
e + d for small

d > 0 [ACK17; CSZ18] but doesn’t yield OCRS.
I.I.D. Prophet Inequality problem: ∃ ≈ 0.7451-competitive ratio
algorithm and it’s tight [Cor+17].
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Interesting Open Problems

1 1/e-selectable greedy OCRS for matroids.
2 k-Prophet for i.i.d. Xi ’s - better than 1 − O

(
1√
k

)
?

3 Optimal OCRSs for matching constraints.
and more...
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QUESTIONS ?
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Fixed-Threshold Algorithm for k-Prophet (Proof 1/2)

One can give a simple fixed-threshold algorithm for this setting, which
achieves a 1 − O

(√
log k

k

)
-competitive ratio.

Idea: Select a threshold T such that the expected number of values
≥ T are k − δ for some δ.
Since the realizations of the Xi ’s are independent, for an appropriately
chosen δ, one can show that the number of realizations that are at least
T are between k − 2δ and k, with high probability (Hoeffding bound).
For fixed realizations, let ST = {i ∈ [n] | Xi ≥ T}. Then∑

i∈ST

Xi =
∑
i∈ST

T + (Xi − T ) = T · |ST | +
∑
i∈ST

(Xi − T ).

Since |ST | ≥ k − 2δ, our revenue is at least (k − 2δ)T .
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Fixed-Threshold Algorithm for k-Prophet (Proof 2/2)

Let S∗ be the optimal set selected by the prophet. Then

OPT =
∑
i∈S∗

Xi ≤
∑
i∈S∗

T + (Xi − T ) ≤ kT +
n∑

i=1
(Xi − T ),

Since |ST | ≤ k, we accepted every value that was at least T . Thus∑
i∈ST

(Xi − T ) =
n∑

i=1
(Xi − T ) ≥ OPT − kT ≥ k − 2δ

k (OPT − kT )

=
(

1 − 2δ

k

)
OPT − (k − 2δ)T .

For δ =
√

2k log k, we get

∑
i∈ST

Xi ≥
(

1 − 2δ

k

)
OPT =

1 −

√
8 log k

k

 OPT .
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“Submodular Function Maximization via the Multilinear
Relaxation and Contention Resolution Schemes”. In:
Proceedings of the Forty-third Annual ACM Symposium on
Theory of Computing. STOC ’11. San Jose, California, USA:
ACM, 2011, pp. 783–792. isbn: 978-1-4503-0691-1. doi:
10.1145/1993636.1993740. url:
http://doi.acm.org/10.1145/1993636.1993740.

[Dyn63] E. B. Dynkin. “The optimum choice of the instant for stopping
a Markov process”. In: Soviet Math. Dokl 4 (1963).

Prophet Inequalities and Online Combinatorial Optimization April 21th, 2022 35 / 38

https://arxiv.org/abs/1807.07483
http://arxiv.org/abs/1807.07483
https://doi.org/10.1145/1993636.1993740
http://doi.acm.org/10.1145/1993636.1993740


References III

[Esf+15] Hossein Esfandiari et al. “Prophet Secretary”. In: CoRR
abs/1507.01155 (2015). arXiv: 1507.01155. url:
http://arxiv.org/abs/1507.01155.

[FSZ16] Moran Feldman, Ola Svensson, and Rico Zenklusen. “Online
Contention Resolution Schemes”. In: Proceedings of the
Twenty-seventh Annual ACM-SIAM Symposium on Discrete
Algorithms. SODA ’16. Arlington, Virginia: Society for Industrial
and Applied Mathematics, 2016, pp. 1014–1033. isbn:
978-1-611974-33-1. url:
http://dl.acm.org/citation.cfm?id=2884435.2884507.

Prophet Inequalities and Online Combinatorial Optimization April 21th, 2022 36 / 38

https://arxiv.org/abs/1507.01155
http://arxiv.org/abs/1507.01155
http://dl.acm.org/citation.cfm?id=2884435.2884507


References IV

[JMZ22] Jiashuo Jiang, Will Ma, and Jiawei Zhang. “Tight Guarantees
for Multi-unit Prophet Inequalities and Online Stochastic
Knapsack”. In: Proceedings of the 2022 Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA). 2022,
pp. 1221–1246. doi: 10.1137/1.9781611977073.51. eprint:
https://epubs.siam.org/doi/pdf/10.1137/1.9781611977073.51.
url:
https://epubs.siam.org/doi/abs/10.1137/1.9781611977073.51.

[KS77] Ulrich Krengel and Louis Sucheston. “Semiamarts and finite
values”. In: Bull. Amer. Math. Soc. 83.4 (July 1977),
pp. 745–747. url:
https://projecteuclid.org:443/euclid.bams/1183538915.

[KW12] Robert Kleinberg and S. Matthew Weinberg. “Matroid Prophet
Inequalities”. In: CoRR abs/1201.4764 (2012). arXiv: 1201.4764.
url: http://arxiv.org/abs/1201.4764.

Prophet Inequalities and Online Combinatorial Optimization April 21th, 2022 37 / 38

https://doi.org/10.1137/1.9781611977073.51
https://epubs.siam.org/doi/pdf/10.1137/1.9781611977073.51
https://epubs.siam.org/doi/abs/10.1137/1.9781611977073.51
https://projecteuclid.org:443/euclid.bams/1183538915
https://arxiv.org/abs/1201.4764
http://arxiv.org/abs/1201.4764


References V

[Lin61] D. V. Lindley. “Dynamic Programming and Decision Theory”.
In: Journal of the Royal Statistical Society. Series C (Applied
Statistics) 10.1 (1961), pp. 39–51. issn: 00359254, 14679876.
url: http://www.jstor.org/stable/2985407.

[Liv21] Vasilis Livanos. “A Simple and Tight Greedy OCRS”. In: CoRR
abs/2111.13253 (2021). arXiv: 2111.13253. url:
https://arxiv.org/abs/2111.13253.

[Sam84] Ester Samuel-Cahn. “Comparison of Threshold Stop Rules and
Maximum for Independent Nonnegative Random Variables”. In:
The Annals of Probability 12.4 (1984), pp. 1213–1216. issn:
00911798. url: http://www.jstor.org/stable/2243359.

Prophet Inequalities and Online Combinatorial Optimization April 21th, 2022 38 / 38

http://www.jstor.org/stable/2985407
https://arxiv.org/abs/2111.13253
https://arxiv.org/abs/2111.13253
http://www.jstor.org/stable/2243359

	Prophets and Secretaries
	The Secretary Problem
	The Prophet Inequality Problem
	Selecting Multiple Values

	Online Combinatorial Optimization
	Primer on Mathematical Programming
	Online Contention Resolution Schemes

	Equivalence via LP Duality
	Variations and Open Problems
	References

