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Prophet Inequality Problem

X1 = 1, w.p. 1 X2 =

{
9, w.p. 19
0, w.p. 89

X3 ∼ U[0, 2] X4 ∼ Poi(1.5)

Given independent r.v.’s X1, . . . ,Xn ∼ D1, . . . ,Dn.

X1, . . . ,Xn arrive in adversarial order. At step i , see realization ui of
Xi .

Decide immediately and irrevocably to select or discard ui .

Goal: Select highest possible single value, compare against offline
optimal E [maxi Xi ].

Chekuri, L. (UIUC) SPI and Correlation Gap September 23rd, 2021 2 / 27



Prophet Inequality Problem
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Prophet Inequality Problem

u2 = 0 u4 = 2 u1 = 1 u3 = 1.74

Tight 1/2-competitive algorithm known [KS77].

Set threshold τ = E[maxi Xi ]
2 , accept first value above threshold [KW12].

Applications: Posted Prices Mechanisms [HKS07; Cha+10].

Related to secretary problem (no distributional information but random
order).
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Beyond Single Item ?

Pick many elements, constraint on what you can pick.

Additive functions:

Cardinality k : 1− 1√
k+3

[Ala14]

Matroid: 1
2 [KW12]

Matching: 0.337 [Ezr+20]
Downward-Closed: O (log n · log r) [Rub16]

Several approaches. One idea: Relaxation + (online) rounding.

Example: Xi =

{
vi w.p. pi

0 otherwise

Solve max
∑
i

xivi then round x

to get feasible S
x ∈ P(C)

∀i ∈ N xi ≤ pi
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Beyond Additive Functions ?

Submodular functions:

∀A,B ⊆ N : f (A) + f (B) ≥ f (A ∩ B) + f (A ∪ B).

If A ⊆ B =⇒ f (A) ≤ f (B), f is monotone.
Assume f (S) ≥ 0 for all S .

How to capture distributional information of PI model?
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Submodular Prophet Inequality

Submodular Prophet Inequality (SPI):

Introduced by [RS16] to capture distributional information of Xi ’s.
Xi takes one value from Ui (correlated distribution), let U =

⋃n
i=1 Ui .

f : 2U → R≥0, submodular.
Constraint C on N instead of U .

Model generalizes traditional prophet inequality problem.
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Submodular Prophet Inequality

Example:

X1 X2 X3
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Submodular Prophet Inequality

Theorem [RS16]

∃O (1)−factor Submodular Prophet Inequalities for single matroid [RS16].

Proof Idea: Given marginals x∗ of OPT,
1 Step 1:

“Relax” f into a continuous function, use correlation gap.

max f (S) =⇒ maxF (x)
S is feasible x ∈ P

Continuous Extensions:

Multilinear Extension: F (x) = ER∼x [f (R)].
Concave Closure:
f +(x) = maxaS

{∑
S aS f (S)

∣∣ aS ≥ 0,
∑

S aS = 1, ∀i ,
∑

S :i∈S aS = xi
}
.

Observe f +(x∗) ≥ OPT .

2 Step 2: Round x∗ to get feasible S .
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Correlation Gap

infx∈[0,1]n
F (x)
f +(x) is correlation gap of f .

For monotone submodular f , correlation gap is at most 1− 1
e [Cal+11;

Agr+12].

For general submodular f (special case of subadditive), correlation gap
can be arbitrarily large.

To get around this, [RS16] define correlation gap variant:

infx∈[0,1]n
Fmax (x)
f +(x) ≥

1
200 , where Fmax(x) = maxy≤x F (y).
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Rounding x∗

[RS16] round x∗ and get bound w.r.t. Fmax(x∗).

∃ rounding schemes which account for constraints: Contention
Resolution Scheme (CRS) [CVZ11].

Online CRS [FSZ16]: A CRS that rounds x in online manner.

∃O (1)-factor OCRSs for matroids, matchings, knapsacks, their
intersection, etc [FSZ16].
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Can we do better?

1 1
200 seems unreasonable for non-monotone correlation gap.

2 What about standard definition of correlation gap?

3 [RS16] technique only works for single matroid. What about more
constraints [Luc17]?

4 Constant is in the thousands. Can we get improved bounds?

5 [RS16] assume knowledge of marginals x∗ of OPT . Can we get results
in polynomial time?
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Results (1/3)

1 Via nice interpretation of known properties, we get
infx∈[0,1]n

Fmax (x)
f +(x) ≥

1
e .

2 Parametrize by p = maxi xi . Use Measured Continuous Greedy
algorithm to get

F (y)

f +(x)
≥

{
1− 1

e − p − ln(1−p)
e , p ∈ [0, 1− 1/e]

1/e, p ∈ [1− 1/e, 1]
.
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Results (2/3)

3 Standard definition of correlation gap:

Theorem

For any non-negative submodular f : 2N → R≥0 and any x ∈ [0, 1]n s.t.
maxi xi ≤ p,

F (x)

f +(x)
≥ (1− p)

(
1− 1

e

)
.

Interesting on its own.
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Results (3/3)

4 Rounding:

Theorem

For any constraint, there exists an efficient black-box reduction from
Submodular Prophet Inequality to Online Contention Resolution Schemes.

Generalizes rounding to several constraints.
Allows for significantly improved bounds for SPI.
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Summary

1 Generalize SPI framework of [RS16] for arbitrary down-closed
constraints for which we have an OCRS.

2 Fine-grained correlation gap for general non-negative submodular
functions (w.r.t. p = maxi xi ).

3 Fine-grained analysis of Measured Continuous Greedy algorithm.

4 Significantly improved bounds for SPI for several constraints in
polynomial time.
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Open Problems

1 Can we get a tight 1
2−submodular prophet inequality for a matroid

constraint?

2 Can the (1− p)
(
1− 1

e

)
-fine-grained correlation gap for general

submodular functions be made tight?
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THANK YOU!

QUESTIONS?
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Rounding Subtleties

Follows framework of [RS16].

Recall: ∃ correlations! Exactly one element of Ui realizes at step i .

Main Idea: Get rid of correlations by treating Xi ∼ Prod(Ui ).

Rubinstein-Singla’s approach uses OCRS on U =⇒ only works on
single matroid.

Refined approach: Eliminate need for OCRS on U , use OCRS only on
N =⇒ works for any constraint.
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