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Prophet Inequality Problem

9 1
Xp=1wp 1 Xp=24 P9 Xz~ U[0,2] X4 ~ Poi(1.5)
7WP9

@ Given independent r.v.'s X1,..., X, ~ Dy, ..., Dp.

@ Xi,..., X, arrive in adversarial order. At step i, see realization u; of
Xi.
@ Decide immediately and irrevocably to select or discard u;.

@ Goal: Select highest possible single value, compare against offline
optimal E [max; Xj].
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Prophet Inequality Problem

X3 ~ U[0,2]

P oo

@ Given independent r.v.'s Xq1,..., X, ~ D1,...,D,.

@ Xi,..., X, arrive in adversarial order. At step i, see realization u; of
X;.
@ Decide immediately and irrevocably to select or discard u;.

@ Goal: Select highest possible single value, compare against offline
optimal E [max; X;].
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Prophet Inequality Problem

oo

e Tight 1/2-competitive algorithm known [KS77].
@ Set threshold 7 = M accept first value above threshold [KW12].
@ Applications: Posted Prices Mechanisms [HKS07; Cha+10].

@ Related to secretary problem (no distributional information but random
order).

uz = 1.74
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Beyond Single Item 7

@ Pick many elements, constraint on what you can pick.
@ Additive functions:

o Cardinality k: 1 — ﬁ
Matroid: § [KW12]

Matching: 0.337 [Ezr+-20]
Downward-Closed: O (log n - log r) [Rub16]

[Alal4]
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Beyond Single Item 7

Pick many elements, constraint on what you can pick.
Additive functions:

o Cardinality k: 1 — ﬁ
Matroid: § [KW12]

Matching: 0.337 [Ezr+-20]
Downward-Closed: O (log n - log r) [Rub16]

[Alal4]

o Several approaches. One idea: Relaxation + (online) rounding.
e Example: X; = Vi W-p- pi_
- 0 otherwise

Solve max g X Vi then round x
i

to get feasible S
x € P(C)
Vie N xi < pi
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Beyond Additive Functions 7

@ Submodular functions:
VA, BC N:f(A)+f(B)>f(AnB)+ f(AUB).

o IfAC B = f(A) < f(B), fis monotone.
o Assume f(S) >0 for all S.

@ How to capture distributional information of Pl model?
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Submodular Prophet Inequality

@ Submodular Prophet Inequality (SPI):

o Introduced by [RS16] to capture distributional information of X;'s.
o X; takes one value from U; (correlated distribution), let & = U7:1 U,.
o f:24 — Rsg, submodular.

e Constraint C on N instead of U.

C defined over [n]

i’ X1 Xz X3 X4

(3000 D)([C3060VCBO0ODV(COOO DY)
Ul U2 US U4

f defined over U

@ Model generalizes traditional prophet inequality problem.
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Submodular Prophet Inequality

o Example:
X1 Xo X3
{ﬁ@ y @ g
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Submodular Prophet Inequality

Theorem [RS16]
30 (1) —factor Submodular Prophet Inequalities for single matroid [RS16].
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Submodular Prophet Inequality

Theorem [RS16]

30 (1) —factor Submodular Prophet Inequalities for single matroid [RS16].

Proof Idea: Given marginals x* of OPT,
O Step 1:

e "Relax” f into a continuous function, use correlation gap.

max f(S) =  maxF(x)
S is feasible xeP

o Continuous Extensions:
o Multilinear Extension: F(x) = Eg~x [f(R)].
o Concave Closure:
FT(x) = maxas {d s asf(S) |as >0, gas = 1,Vi, Y s.csas = xi }.
o Observe fT(x*) > OPT.
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Submodular Prophet Inequality

Theorem [RS16]

30 (1) —factor Submodular Prophet Inequalities for single matroid [RS16].

Proof Idea: Given marginals x* of OPT,
O Step 1:

e "Relax” f into a continuous function, use correlation gap.

max f(S) =  maxF(x)
S is feasible xeP

o Continuous Extensions:
o Multilinear Extension: F(x) = Eg~x [f(R)].
o Concave Closure:
FT(x) = maxas {d s asf(S) |as >0, gas = 1,Vi, Y s.csas = xi }.
o Observe fT(x*) > OPT.

@ Step 2: Round x* to get feasible S.

Chekuri, L. (UIUC) SPI and Correlation Gap September 23rd, 2021 11/27



Correlation Gap

@ inf.cpo,q) fﬁ(—(xx)) is correlation gap of f.

@ For monotone submodular f, correlation gap is at most 1 — % [Cal+11;
Agr+12].

@ For general submodular f (special case of subadditive), correlation gap
can be arbitrarily large.

@ To get around this, [RS16] define correlation gap variant:

infyeo,17 F;"%()(:)() > ﬁ, where Fpax(Xx) = max,<x F(y).

Chekuri, L. (UIUC) SPI and Correlation Gap September 23rd, 2021 12 /27



@ [RS16] round x* and get bound w.r.t. Fpax(x*).

Correlation

OPT —=2 3 Fxv) M) Feasible S

Multilinear Extension
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@ [RS16] round x* and get bound w.r.t. Fpax(x*).

Correlation

OPT —=2 3 Fxv) M) Feasible S

Multilinear Extension

@ 1 rounding schemes which account for constraints: Contention
Resolution Scheme (CRS) [CVZ11].

e Online CRS [FSZ16]: A CRS that rounds x in online manner.

e 30 (1)-factor OCRSs for matroids, matchings, knapsacks, their
intersection, etc [FSZ16].
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Can we do better?

(1) ﬁ seems unreasonable for non-monotone correlation gap.

@ What about standard definition of correlation gap?

© [RS16] technique only works for single matroid. What about more
constraints [Lucl7]?

@ Constant is in the thousands. Can we get improved bounds?

© [RS16] assume knowledge of marginals x* of OPT. Can we get results
in polynomial time?
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Results (1/3)

@ Via nice interpretation of known properties, we get
H Fmax(x 1
infxefo,1pr f+(>(<)) Z e

Chekuri, L. (UIUC) SPI and Correlation Gap September 23rd, 2021 15 /27



Results (1/3)

@ Via nice interpgr?tation of known properties, we get
Fmax(x 1

imcxe[O,l]" (x) > 2.

@ Parametrize by p = max; x;. Use Measured Continuous Greedy
algorithm to get

Fly) o 1—%—p—ﬂ%ﬂ,pemﬂ—1kL
| 1/e, pell—1/e1]
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Results (2/3)

© Standard definition of correlation gap:

For any non-negative submodular f : 2¥ — R~ and any x € [0,1]" s.t.

max; x; < p,

fF(X) > (1- p) (1_l)‘

e

o Interesting on its own.
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Results (3/3)

@ Rounding:

For any constraint, there exists an efficient black-box reduction from
Submodular Prophet Inequality to Online Contention Resolution Schemes.

o Generalizes rounding to several constraints.
o Allows for significantly improved bounds for SPI.
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© Rounding:

For any constraint, there exists an efficient black-box reduction from
Submodular Prophet Inequality to Online Contention Resolution Schemes.

o Generalizes rounding to several constraints.
o Allows for significantly improved bounds for SPI.

Feasibility constraint Competitive Ratio
Monotone Submodular | General Submodular
Uniform matroid of rank k — oo 1/4.3 1/17.2
Matroid 1/7.4 1/30
Matching 1/9.5 1/38
Knapsack 1/17.5 1/70
Intersection of & matroids Q(1/k) Q(1/k)

Table 1: A summary of our results for several feasibility constraints.
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@ CGeneralize SPI framework of [RS16] for arbitrary down-closed
constraints for which we have an OCRS.

@ Fine-grained correlation gap for general non-negative submodular
functions (w.r.t. p = max; x;).

© Fine-grained analysis of Measured Continuous Greedy algorithm.

@ Significantly improved bounds for SPI for several constraints in
polynomial time.
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Open Problems

@ Can we get a tight %—submodular prophet inequality for a matroid
constraint?

@ Can the (1 —p) (1 — %)—fine—grained correlation gap for general
submodular functions be made tight?
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THANK YOU!

QUESTIONS?
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Rounding Subtleties

C defined over [n]

ST U W oY

((efeXeXeXoko)](¢fsXeXeReke)/(¢XeXeXeXeX0)| (CX6)

500

Uy Uy Us

Uy

f defined over U

Follows framework of [RS16].

Recall: 3 correlations! Exactly one element of U; realizes at step i.
Main Idea: Get rid of correlations by treating X; ~ Prod(U;).

Rubinstein-Singla’s approach uses OCRS on &/ = only works on

single matroid.

Refined approach: Eliminate need for OCRS on U, use OCRS only on

N = works for any constraint.
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