Combinatorial Optimization under Uncertainty

Vasilis Livanos
livanos3@illinois.edu
University of Illinois Urbana-Champaign

2nd Drafting Workshop in Discrete Mathematics and Probability, Budapest, Hungary.

February 7th, 2023

A familiar* setup...

$$
\begin{array}{cl}
\max & \boldsymbol{w}^{T} \boldsymbol{x} \\
\text { s.t. } & \boldsymbol{x} \in \mathcal{P} \\
& x_{i} \in\{0,1\} \quad \forall i
\end{array}
$$

A familiar* setup...

$$
\begin{array}{cl}
\max & \boldsymbol{w}^{\top} \boldsymbol{x} \\
\text { s.t. } & \boldsymbol{x} \in \mathcal{P} \quad \Longrightarrow \quad \begin{array}{cl}
\max & \boldsymbol{w}^{\top} \boldsymbol{x} \\
& x_{i} \in\{0,1\} \quad \forall i
\end{array} \quad \text { s.t. } \quad \boldsymbol{x} \in \mathcal{P} \\
& \\
0 \leq x_{i} \leq 1 \quad \forall i
\end{array}
$$

A familiar* setup...

$$
\begin{array}{cl}
\max & \boldsymbol{w}^{T} \boldsymbol{x} \\
\text { s.t. } & \boldsymbol{x} \in \mathcal{P} \quad \Longrightarrow \quad \begin{array}{cl}
\max & \boldsymbol{w}^{\top} \boldsymbol{x} \\
& x_{i} \in\{0,1\} \quad \forall i
\end{array} \quad \text { s.t. } \\
\boldsymbol{x} \in \mathcal{P} \\
& 0 \leq x_{i} \leq 1 \quad \forall i
\end{array}
$$

A familiar* setup...

$$
\begin{array}{cl}
\max & \boldsymbol{w}^{\top} \boldsymbol{x} \\
\text { s.t. } & \boldsymbol{x} \in \mathcal{P} \quad \Longrightarrow \quad \begin{array}{cl}
\max & \boldsymbol{w}^{\top} \boldsymbol{x} \\
& x_{i} \in\{0,1\} \quad \forall i
\end{array} \quad \text { s.t. } \\
\boldsymbol{x} \in \mathcal{P} \\
& \\
0 \leq x_{i} \leq 1 \quad \forall i
\end{array}
$$

A familiar* setup...

$$
\begin{array}{cl}
\max & \boldsymbol{w}^{\top} \boldsymbol{x} \\
\text { s.t. } & \boldsymbol{x} \in \mathcal{P} \quad \Longrightarrow \quad \max \\
& x_{i} \in\{0,1\} \quad \boldsymbol{w}^{\top} \boldsymbol{x} \\
\text { s.t. } & \boldsymbol{x} \in \mathcal{P} \\
& \\
& 0 \leq x_{i} \leq 1 \quad \forall i
\end{array}
$$

...with a twist!

Attempt \#1

Create random set R where $i \in R$ independently w.p. x_{i} (active elements).
ك $\mathbb{E}\left[\sum_{i \in R} w_{i}\right]=\sum_{i} w_{i} \cdot x_{i}$
$7 R$ might be infeasible

...with a twist!

Attempt \#1
Create random set R where $i \in R$ independently w.p. x_{i} (active elements).
ك $\mathbb{E}\left[\sum_{i \in R} w_{i}\right]=\sum_{i} w_{i} \cdot x_{i}$
$7 R$ might be infeasible
Attempt \#2: Contention Resolution Scheme (CRS) π [Chekuri, Vondrák and Zenklusen '11]

1. Create random set R where $i \in R$ independently w.p. x_{i}.
2. Drop elements from R to create feasible $\pi(R)$.

Contention Resolution Schemes (CRSs)

c-selectability
CRS is c-selectable if $\quad \operatorname{Pr}[i \in \pi(R) \mid i \in R] \geq c \quad \forall i$.
Theorem [Chekuri, Vondrák and Zenklusen '11]
There exists a ($1-1 / e$)-selectable CRS for matroid polytopes. Holds if R revealed in uniformly random order. What about adversarial order?

Online Contention Resolution Schemes (OCRSs)

Online Contention Resolution Scheme (OCRS)
[Alaei '11, Feldman, Svensson and Zenklusen '15]

Online Contention Resolution Schemes (OCRSs)

Online Contention Resolution Scheme (OCRS)
[Alaei '11, Feldman, Svensson and Zenklusen '15]

Online Contention Resolution Schemes (OCRSs)

Online Contention Resolution Scheme (OCRS)
[Alaei '11, Feldman, Svensson and Zenklusen '15]

Online Contention Resolution Schemes (OCRSs)

Online Contention Resolution Scheme (OCRS)
[Alaei '11, Feldman, Svensson and Zenklusen '15]

Online Contention Resolution Schemes (OCRSs)

Online Contention Resolution Scheme (OCRS)
[Alaei '11, Feldman, Svensson and Zenklusen '15]

Online Contention Resolution Schemes (OCRSs)

Online Contention Resolution Scheme (OCRS)
[Alaei '11, Feldman, Svensson and Zenklusen '15]

selected elements
$\exists 1 / 2$-selectable OCRS for rank-1 matroids (tight). [Alaei '11]
$\exists 1 / 2$-selectable OCRS for matroids. [Lee, Singla '18]

Why bother?

1. Black-box composition for multiple constraints.
2. Rich connections to Optimal Stopping Theory - captures online decision making.
3. Rounding LPs online.

Prophet Inequality

[Krengel, Sucheston and Garling '77]

$X_{1}, X_{2}, \ldots, X_{n} \stackrel{\text { ind. }}{\sim}($ known $) \mathcal{D}_{1}, \mathcal{D}_{2}, \ldots, \mathcal{D}_{n}$ arrive in adversarial order.

- Design stopping time to maximize selected value.
- Compare against all-knowing prophet: $\mathbb{E}\left[\max _{i} X_{i}\right]$.

Let's play!

Let's play!

$$
X_{1}=3.91
$$

Let's play!

Let's play!

Let's play!

Prophet Inequality

Prophet Inequality [Krengel, Sucheston and Garling '77, '78]

\exists stopping strategy that achieves $1 / 2 \cdot \mathbb{E}\left[\max _{i} X_{i}\right]$, and this is tight.

$$
X_{1}=1 \quad \text { w.p. } 1, \text { and } X_{2}= \begin{cases}1 / \varepsilon & \text { w.p. } \varepsilon \\ 0 & \text { w.p. } 1-\varepsilon\end{cases}
$$

$\mathbb{E}[A L G]=1$ for all algorithms.
$\mathbb{E}\left[\max _{i} X_{i}\right]=\frac{1}{\varepsilon} \cdot \varepsilon+1 \cdot(1-\varepsilon)=2-\varepsilon$.

Prophet Inequality

Prophet Inequality [Krengel, Sucheston and Garling '77, '78]

\exists stopping strategy that achieves $1 / 2 \cdot \mathbb{E}\left[\max _{i} X_{i}\right]$, and this is tight.

$$
X_{1}=1 \quad \text { w.p. } 1, \text { and } X_{2}= \begin{cases}1 / \varepsilon & \text { w.p. } \varepsilon \\ 0 & \text { w.p. } 1-\varepsilon\end{cases}
$$

$\mathbb{E}[A L G]=1$ for all algorithms.
$\mathbb{E}\left[\max _{i} X_{i}\right]=\frac{1}{\varepsilon} \cdot \varepsilon+1 \cdot(1-\varepsilon)=2-\varepsilon$.

- Idea: Set threshold T, accept first $X_{i} \geq T$.
- $T: \operatorname{Pr}\left[\max _{i} X_{i} \geq T\right]=1 / 2$ works [Samuel-Cahn '84].
- $T=1 / 2 \cdot \mathbb{E}\left[\max _{i} X_{i}\right]$ works [Kleinberg and Weinberg '12].

Proof for rank-1 Matroids

$$
\begin{aligned}
& X^{*}=\max _{i} X_{i} \\
& p_{i}=\operatorname{Pr}\left[X^{*}=X_{i}\right] \Longrightarrow \sum_{i} p_{i}=1 \\
& \quad \tau_{i}: \operatorname{Pr}\left[X_{i} \geq \tau_{i}\right]=p_{i} \\
& \quad v_{i}\left(p_{i}\right):=\mathbb{E}\left[X_{i} \mid X_{i} \geq \tau_{i}\right]
\end{aligned}
$$

Proof for rank-1 Matroids

$$
\begin{aligned}
X^{*} & =\max _{i} X_{i} \\
p_{i} & =\operatorname{Pr}\left[X^{*}=X_{i}\right] \Longrightarrow \sum_{i} p_{i}=1 . \\
& \tau_{i}: \operatorname{Pr}\left[X_{i} \geq \tau_{i}\right]=p_{i} \\
& v_{i}\left(p_{i}\right):=\mathbb{E}\left[X_{i} \mid X_{i} \geq \tau_{i}\right] \\
& \mathbb{E}\left[X^{*}\right] \leq \sum_{i} v_{i}\left(p_{i}\right) \cdot p_{i},
\end{aligned}
$$ since $X^{*} \sim \mathcal{D}^{*}$ with marginals \boldsymbol{p}.

Proof for rank-1 Matroids

Idea
Reject every random variable X_{i} w.p. $1 / 2$. Otherwise accept i iff $X_{i} \geq \tau_{i}$ (happens w.p. p_{i}).

$$
\mathbb{E}[A L G]=\sum_{i} \operatorname{Pr}[\text { We reach } i] \cdot 1 / 2 \cdot p_{i} \cdot v_{i}\left(p_{i}\right)
$$

Proof for rank-1 Matroids

Idea

Reject every random variable X_{i} w.p. $1 / 2$.
Otherwise accept i iff $X_{i} \geq \tau_{i}$ (happens w.p. p_{i}).

$$
\mathbb{E}[A L G]=\sum_{i} \operatorname{Pr}[\text { We reach } i] \cdot 1 / 2 \cdot p_{i} \cdot v_{i}\left(p_{i}\right)
$$

By a union bound,
$\operatorname{Pr}[$ We reach $i] \geq \operatorname{Pr}[$ We pick nothing $] \geq 1-\sum_{i} \frac{p_{i}}{2} \geq \frac{1}{2}$.

- $1 / 4$-approximation to $\mathbb{E}\left[X^{*}\right]$.

Proof for rank-1 Matroids

Idea

Reject every random variable X_{i} w.p. $1 / 2$.
Otherwise accept i iff $X_{i} \geq \tau_{i}$ (happens w.p. p_{i}).

$$
\mathbb{E}[A L G]=\sum_{i} \operatorname{Pr}[\text { We reach } i] \cdot 1 / 2 \cdot p_{i} \cdot v_{i}\left(p_{i}\right)
$$

By a union bound,

$$
\operatorname{Pr}[\text { We reach } i] \geq \operatorname{Pr}[\text { We pick nothing }] \geq 1-\sum_{i} \frac{p_{i}}{2} \geq \frac{1}{2}
$$

- $1 / 4$-approximation to $\mathbb{E}\left[X^{*}\right]$.

Rewrite

$$
\mathbb{E}[A L G] \geq \sum_{i} r_{i} \cdot q_{i} \cdot p_{i} \cdot v_{i}\left(p_{i}\right)
$$

Can we ensure $r_{i} \cdot q_{i}=1 / 2$?

- $r_{1}=1 \Longrightarrow q_{1}=1 / 2$. Then $r_{i+1}=r_{i}\left(1-q_{i} p_{i}\right)$
- If we set $q_{i}=\frac{1}{2 r_{i}} \Longrightarrow r_{i+1}=r_{i}-\frac{p_{i}}{2}=1-\sum_{j \leq i} \frac{p_{i}}{2} \geq \frac{1}{2}$

Proof for Rank-1 Matroids

Idea
Reject every random variable X_{i} w.p. $1 / 2$.
Otherwise accept i iff $X_{i} \geq \tau_{i}$ (happens w.p. p_{i}).

$$
\mathbb{E}[A L G]=\sum_{i} \operatorname{Pr}[\text { We reach } i] \cdot 1 / 2 \cdot p_{i} \cdot v_{i}\left(p_{i}\right)
$$

By a union bound,

$$
\operatorname{Pr}[\text { We reach } i] \geq \operatorname{Pr}[\text { We pick nothing }] \geq 1-\sum_{i} \frac{p_{i}}{2} \geq \frac{1}{2}
$$

- $1 / 4$-approximation to $\mathbb{E}\left[X^{*}\right]$.

Rewrite

$$
\mathbb{E}[A L G] \geq \frac{1}{2} \cdot \sum_{i} x_{i} \cdot w_{i}
$$

Adversaries

What does the adversary know?
6 Offline: Nothing. 1/2-OCRS for rank-1 matroids, 1/2-OCRS for matroids.

Adversaries

What does the adversary know?
(Offline: Nothing. 1/2-OCRS for rank-1 matroids, $1 / 2$-OCRS for matroids.
6 Online: Same information as the Algorithm at every step. $1 / 2$-OCRS for rank-1 matroids, $1 / 2$-OCRS for matroids.

Adversaries

What does the adversary know?
6 Offline: Nothing. 1/2-OCRS for rank-1 matroids, 1/2-OCRS for matroids.
6 Online: Same information as the Algorithm at every step. 1/2-OCRS for rank-1 matroids, $1 / 2$-OCRS for matroids.
? Almighty: All of R and randomness of the Algorithm. $1 / 4$-OCRS for rank-1 matroids, $1 / 4$-OCRS for matroids.

Adversaries

What does the adversary know?
6 Offline: Nothing. 1/2-OCRS for rank-1 matroids, 1/2-OCRS for matroids.
6 Online: Same information as the Algorithm at every step. 1/2-OCRS for rank-1 matroids, $1 / 2$-OCRS for matroids.
? Almighty: All of R and randomness of the Algorithm. 1/4-OCRS for rank-1 matroids, $1 / 4$-OCRS for matroids.

Greedy OCRS (Informal)
Decides (randomly) which elements to select before it sees R.

- Works against almighty adversary.

Adversaries

What does the adversary know?
(Offline: Nothing. 1/2-OCRS for rank-1 matroids, $1 / 2$-OCRS for matroids.
4 Online: Same information as the Algorithm. 1/2-OCRS for rank-1 matroids, $1 / 2$-OCRS for matroids.
? Almighty: All of R and randomness of the Algorithm. $1 / 4$-OCRS for rank-1 matroids, $1 / 4$-OCRS for matroids.

Greedy OCRS (Formal)

Create $\mathcal{F}_{\boldsymbol{X}} \subseteq \mathcal{I}$ before seeing R. When element i arrives, greedily select i iff $i \in R \& S_{i-1}+i \in \mathcal{F}_{\boldsymbol{x}}$.

Adversaries

What does the adversary know?
(4) Offline: Nothing. 1/2-OCRS for rank-1 matroids, 1/2-OCRS for matroids.
4. Online: Same information as the Algorithm. 1/2-OCRS for rank-1 matroids, 1/2-OCRS for matroids.
4? Almighty: All of R and randomness of the Algorithm. $1 / 4 \Longrightarrow 1 / e-O C R S$ for rank-1 matroids, 1/4-OCRS for matroids.

Greedy OCRS (Formal)
Create $\mathcal{F}_{\boldsymbol{x}} \subseteq \mathcal{I}$ before seeing R. When element i arrives, greedily select i iff $i \in R \& S_{i-1}+i \in \mathcal{F}_{\boldsymbol{x}}$.

Theorem [L. '22]
$\exists 1 / e$-selectable Greedy OCRS for rank-1 matroids, and this is the best possible.

Proof

Recall \boldsymbol{x} optimal solution to LP and $\sum_{i} x_{i} \leq 1$ (rank-1 matroid).

Proof

Recall \boldsymbol{x} optimal solution to LP and $\sum_{i} x_{i} \leq 1$ (rank-1 matroid).

Idea
Create set $\mathcal{F}_{\boldsymbol{x}}$ where $i \in \mathcal{F}_{\boldsymbol{x}}$ independently w.p. $\frac{1-e^{-x_{i}}}{x_{i}}$. Greedily select first $i \in R \cap \mathcal{F}_{\boldsymbol{x}}$.

- Simulates "splitting" i into many small elements.

m elements

Proof

$$
\begin{align*}
\operatorname{Pr}[i \text { is selected }] & =\operatorname{Pr}\left[i \in \mathcal{F}_{x}\right] \cdot \prod_{j<i}(1-\operatorname{Pr}[j \text { is selected }]) \\
& \geq \frac{1-e^{-x_{i}}}{x_{i}} \prod_{j<i}\left(1-x_{j} \cdot \frac{1-e^{-x_{j}}}{x_{j}}\right) \\
& =\frac{1-e^{-x_{i}}}{x_{i}} \prod_{j<i} e^{-x_{j}} \\
& =\frac{1-e^{-x_{i}}}{x_{i}} \cdot e^{-\sum_{j<i} x_{j}} \\
& \geq \frac{\left(1-e^{-x_{i}}\right) e^{x_{i}-1}}{x_{i}} \tag{1}
\end{align*}
$$

(1) is minimized for $x_{i} \rightarrow 0 \Longrightarrow 1 / e$.

- Worst-case is $n \rightarrow \infty$ and $x_{i} \rightarrow 0 \forall i$.
- Idea extends to partition and transversal matroids.

Other constraints \& Open problems

? $1 / e$-Greedy OCRS for matroids?
2. k-Uniform Matroid:
$\checkmark 1-\mathrm{O}(1 / \sqrt{k})$-OCRS [Alaei '11]
$\checkmark 1-\mathrm{O}(\sqrt{\log k / k})$-Greedy OCRS

Other constraints \& Open problems

? $1 / e$-Greedy OCRS for matroids?
2. k-Uniform Matroid:
$\checkmark 1-\mathrm{O}(1 / \sqrt{k})$-OCRS [Alaei '11]
$\checkmark 1-\mathrm{O}(\sqrt{\log k / k})$-Greedy OCRS
3. Matching:
$? \geq 0.349-O C R S$ for bipartite, ≥ 0.344-OCRS
[MacRury, Ma, Grammel '22]
$? \leq 0.433-$ OCRS for bipartite,≤ 0.4-OCRS
[MacRury, Ma, Grammel '22]
? $\geq 1 / 2 e$-Greedy OCRS [Feldman, Svensson, Zenklusen '16]
? When R is revealed in uniformly random order: $\leq 1 / 2$-ROCRS [MacRury, Ma, Grammel '22]

Other constraints \& Open problems

? $1 / e$-Greedy OCRS for matroids?
2. k-Uniform Matroid:
$\checkmark 1-\mathrm{O}(1 / \sqrt{k})$-OCRS [Alaei '11]
$\checkmark 1-\mathrm{O}(\sqrt{\log k / k})$-Greedy OCRS
3. Matching:
$? \geq 0.349-O C R S$ for bipartite, ≥ 0.344-OCRS [MacRury, Ma, Grammel '22]
$? \leq 0.433-$ OCRS for bipartite, ≤ 0.4-OCRS [MacRury, Ma, Grammel '22]
? $\geq 1 / 2 e$-Greedy OCRS [Feldman, Svensson, Zenklusen '16]
? When R is revealed in uniformly random order: $\leq 1 / 2$-ROCRS [MacRury, Ma, Grammel '22]
? Is $1 / 2 e$-Greedy OCRS for matchings optimal?

Thank You!

Questions?

