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Prophet Inequality

X1, X2, . . . , Xn ∼ (known) D1, D2, . . . , Dn arrive in adversarial order.
Decide immediately and irrevocably to select or reject Xi .
▶ Design stopping time to maximize selected value.
▶ Compare against all-knowing prophet: E[maxi Xi ].

Prophet Inequality [Krengel, Sucheston and Garling ’77, ’78]
∃ stopping strategy that achieves 1/2 · E[maxi Xi ],
and this is tight.

▶ Idea: Set threshold T , accept first Xi ≥ T .
▶ T : Pr[maxi Xi ≥ T ] = 1/2 works [Samuel-Cahn ’84].
▶ T = 1/2 · E[maxi Xi ] works [Kleinberg and Weinberg ’12].
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Alternative Proof

X ∗ = maxi Xi
pi = Pr[X ∗ = Xi ] =⇒

∑
i pi = 1.

▶ τi : Pr[Xi ≥ τi ] = pi
▶ vi(pi) := E [Xi | Xi ≥ τi ]

▶ E[X ∗] ≤
∑

i vi(pi) · pi ,
since X ∗ ∼ D∗ with marginals p.

max
∑

i
vi(zi) · zi

s.t.
∑

i
zi ≤ 1 (1)

0 ≤ zi ≤ 1 ∀i
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Idea
Reject every random variable Xi w.p. 1/2.
Otherwise accept i iff Xi ≥ τi (happens w.p. pi).

E[ALG ] =
∑

i
Pr[We reach i ] · 1/2 · pi · vi(pi)

By a union bound,
Pr[We reach i ] ≥ Pr[We pick nothing] ≥ 1 −

∑
i

pi
2 ≥ 1

2 .

▶ 1/4-approximation to E[X ∗]. Better?

Rewrite
E[ALG ] ≥

∑
i

ri · qi · pi · vi(pi)

Can we ensure ri · qi = 1/2?
▶ r1 = 1 =⇒ q1 = 1/2. Then ri+1 = ri (1 − qipi)
▶ If we set qi = 1

2ri
=⇒ ri+1 = ri − pi

2 = 1 −
∑

j≤i
pi
2 ≥ 1

2
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How to generalize this?

max
∑

i
vi(zi) · zi

s.t.
∑

i
zi ≤ 1

0 ≤ zi ≤ 1 ∀i

=⇒
max

∑
i

wi · zi

s.t. z ∈ P(M) (2)
0 ≤ zi ≤ 1 ∀i

▶ x: Optimal solution to (2). How to round x?

Attempt #1
Create random set R where i ∈ R independently w.p. xi
(active elements).

E[
∑

i∈R wi ] =
∑

i wi · xi

R might be infeasible
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How to generalize this?

Attempt #2: Contention Resolution Scheme (CRS) π

1. Create random set R where i ∈ R independently w.p. xi .
2. Drop elements from R to create feasible π(R).

▶ [Chekuri, Vondrák and Zenklusen ’11].

c-selectability
CRS is c-selectable if

Pr [i ∈ π(R) | i ∈ R] ≥ c ∀i .

▶ CRS is c-selectable =⇒ c-approximation to LP.
▶ CRSs combine in black-box way for general

constraints/objectives.
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Contention Resolution Schemes (CRSs)

▶ Motivation: Submodular Function Maximization
▶ f : 2N → R is submodular if

∀A, B f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B).

Theorem [Chekuri, Vondrák and Zenklusen ’11]
There exists a (1 − 1/e)-selectable CRS for matroid polytopes.
▶ Intuition: Greedy is optimal for matroids + a differential

equality.
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Correlation Gap

For constraint C = (N , I), let rw(S) = maxT⊆S,T∈I
∑

i∈T wi .

Correlation Gap
The correlation gap of C is defined as

inf
x∈PC ,w≥0

E[rw(R(x))]∑
i∈N wi xi

,

where i ∈ R independently w.p. xi , ∀i ∈ N .

Theorem [Chekuri, Vondrák and Zenklusen ’11]
The correlation gap of the rw for a constraint C is the same as the
maximum c such that C admits a c-selectable CRS.
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Proving Existence of CRSs via LPs? Very meta!

Fix x, consider all mappings ϕ : 2N → I.

max c
s.t.

∑
ϕ λϕ Pr [i ∈ ϕ(R(x)) | i ∈ R(x)] ≥ c ∀i ∈ N∑
ϕ λϕ = 1

λϕ ≥ 0 ∀ϕ

Dual:

min µ
s.t.

∑
i∈N zi Pr [i ∈ ϕ(R(x)) | i ∈ R(x)] ≤ µ ∀ϕ∑
i∈N zi = 1

zi ≥ 0 ∀i ∈ N
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Strong duality:

OPT = min
z

max
ϕ

∑
i∈N

zi Pr [i ∈ ϕ(R(x)) | i ∈ R(x)]

= min
z

max
ϕ

∑
i∈N

zi
Pr [i ∈ ϕ(R(x))]

Pr[i ∈ R(x)] .

Let wi = zi
xi

, recall that xi = Pr[i ∈ R(x)].

OPT = min
w :
∑

i wi xi =1
max

ϕ

∑
i∈N

wi Pr [i ∈ ϕ(R(x))]

= min
w :
∑

i wi xi =1
max

ϕ
E

S←ϕ(R(x))

∑
i∈S

wi


= min

w :
∑

i wi xi =1
E[rw(R(x))]

= min
w≥0

E[rw(R(x))]∑
i∈N wixi

.
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Open Problems

▶ 1 − 1/e is tight for matroids [Yan ’10].

Open Problem
What is the correlation gap for a matching constraint?
▶ ≥ 0.4326 [Bruggmann, Zenklusen ’20], ≤ 0.544 [Karp, Sipser

’81].
▶ ≥ 0.509 [Nuti, Vondrák ’22], ≤ 0.544 [Karp, Sipser ’81] for

bipartite matching.
▶ More questions on knapsack constraints.
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Online Contention Resolution Schemes

Online Contention Resolution Scheme (OCRS)
The elements of R (active elements) are revealed to the algorithm
one by one in adversarial order.
▶ [Alaei ’11, Feldman, Svensson and Zenklusen ’15].
▶ ∃ 1/2-selectable OCRS for single item (tight). R = {i | Xi ≥ τi}.

Recall we guaranteed Pr [i ∈ π(R) | i ∈ R] = ri · qi = 1/2.
Why care about OCRSs?

▶ c-selectable OCRS for C =⇒ c-approximation to Prophet
Inequality with constraint C.

▶ c-approximation to (slight variant of) Prophet Inequality for
C =⇒ c-selectable OCRS for C.
Can use prophet inequalities to design optimal OCRSs!
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Adversaries

What does the adversary know?
▶ Offline: Nothing.

1/2-OCRS for single item, 1/2-OCRS for matroids.

▶ Online: Same information as the Algorithm at every step.
1/2-OCRS for single item, 1/4-OCRS for matroids.

▶ Almighty: All realizations and randomness of the Algorithm.
1/4-OCRS for single item, 1/4-OCRS for matroids.

Greedy OCRS (Informal)
Decides (randomly) which elements to select before it sees R.
▶ Works against almighty adversary.
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▶ Online: Same information as the Algorithm.

1/2-OCRS for single item, 1/4-OCRS for matroids.
▶ Almighty: All realizations and randomness of the Algorithm.

1/4 =⇒ 1/e -OCRS for single item, 1/4-OCRS for matroids.

Greedy OCRS (Formal)
Create Fx ⊆ I before seeing R. When element i arrives, greedily
select i iff i ∈ R & Si−1 + i ∈ Fx .

Theorem [L. ’22]
∃1/e-selectable Greedy OCRS for single items, and this is the best
possible.
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Recall x optimal solution to LP and
∑

i xi ≤ 1 (single item).

Idea
Create set T where i ∈ T independently w.p. 1−e−xi

xi
.

Greedily select i if i ∈ R ∩ T .
▶ Simulates ”splitting” i into many small elements.
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Pr[i is selected] = Pr[i ∈ T ] ·
∏
j<i

(1 − Pr[j is selected])

≥ 1 − e−xi

xi

∏
j<i

(
1 − xj · 1 − e−xj

xj

)

= 1 − e−xi

xi

∏
j<i

e−xj

= 1 − e−xi

xi
· e−

∑
j<i xj

≥ (1 − e−xi ) exi−1

xi
(1)

(1) is minimized for xi → 0 =⇒ 1/e.
▶ Worst-case is n → ∞ and xi → 0 ∀i .
▶ Idea extends to partition and transversal matroids.
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More Open Problems!
1. k-Uniform Matroid:

✓ 1 − O (1/
√

k)-OCRS [Alaei ’11]
✓ 1 − O

(√
log k/k

)
-Greedy OCRS

2. General Matroid:
✓ 1/2-OCRS [Lee, Singla ’18]

Open Problem
Can we extend 1/e-Greedy OCRS to general matroids?

3. Matching:
Open Problem
What is the maximum c-OCRS for (bipartite / general) matchings?

▶ ≥ 0.349-OCRS for bipartite, ≥ 0.344-OCRS [MacRury, Ma,
Grammel ’22]

▶ ≤ 0.433-OCRS for bipartite, ≤ 0.4-OCRS [MacRury, Ma,
Grammel ’22]

▶ ≥ 1/2e ≈ 0.184-Greedy OCRS [Feldman, Svensson, Zenklusen
’16]

29 / 32



More Open Problems!
1. k-Uniform Matroid:

✓ 1 − O (1/
√

k)-OCRS [Alaei ’11]
✓ 1 − O

(√
log k/k

)
-Greedy OCRS

2. General Matroid:
✓ 1/2-OCRS [Lee, Singla ’18]

Open Problem
Can we extend 1/e-Greedy OCRS to general matroids?

3. Matching:
Open Problem
What is the maximum c-OCRS for (bipartite / general) matchings?

▶ ≥ 0.349-OCRS for bipartite, ≥ 0.344-OCRS [MacRury, Ma,
Grammel ’22]

▶ ≤ 0.433-OCRS for bipartite, ≤ 0.4-OCRS [MacRury, Ma,
Grammel ’22]

▶ ≥ 1/2e ≈ 0.184-Greedy OCRS [Feldman, Svensson, Zenklusen
’16]

30 / 32



More Open Problems!
1. k-Uniform Matroid:

✓ 1 − O (1/
√

k)-OCRS [Alaei ’11]
✓ 1 − O

(√
log k/k

)
-Greedy OCRS

2. General Matroid:
✓ 1/2-OCRS [Lee, Singla ’18]

Open Problem
Can we extend 1/e-Greedy OCRS to general matroids?

3. Matching:
Open Problem
What is the maximum c-OCRS for (bipartite / general) matchings?

▶ ≥ 0.349-OCRS for bipartite, ≥ 0.344-OCRS [MacRury, Ma,
Grammel ’22]

▶ ≤ 0.433-OCRS for bipartite, ≤ 0.4-OCRS [MacRury, Ma,
Grammel ’22]

▶ ≥ 1/2e ≈ 0.184-Greedy OCRS [Feldman, Svensson, Zenklusen
’16]

31 / 32



Thank You!

Questions?
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