Rounding LPs in a "Fair" Way: Many Questions, Few Answers

Vasilis Livanos
livanos3@illinois.edu
University of Illinois Urbana-Champaign

January 18th, 2023

Prophet Inequality

$X_{1}, X_{2}, \ldots, X_{n} \sim($ known $) \mathcal{D}_{1}, \mathcal{D}_{2}, \ldots, \mathcal{D}_{n}$ arrive in adversarial order. Decide immediately and irrevocably to select or reject X_{i}.

- Design stopping time to maximize selected value.
- Compare against all-knowing prophet: $\mathbb{E}\left[\max _{i} X_{i}\right]$.

Prophet Inequality [Krengel, Sucheston and Garling '77, '78]

\exists stopping strategy that achieves $1 / 2 \cdot \mathbb{E}\left[\max _{i} X_{i}\right]$, and this is tight.

Prophet Inequality

$X_{1}, X_{2}, \ldots, X_{n} \sim($ known $) \mathcal{D}_{1}, \mathcal{D}_{2}, \ldots, \mathcal{D}_{n}$ arrive in adversarial order. Decide immediately and irrevocably to select or reject X_{i}.

- Design stopping time to maximize selected value.
- Compare against all-knowing prophet: $\mathbb{E}\left[\max _{i} X_{i}\right]$.

Prophet Inequality [Krengel, Sucheston and Garling '77, '78]

\exists stopping strategy that achieves $1 / 2 \cdot \mathbb{E}\left[\max _{i} X_{i}\right]$, and this is tight.

- Idea: Set threshold T, accept first $X_{i} \geq T$.
- $T: \operatorname{Pr}\left[\max _{i} X_{i} \geq T\right]=1 / 2$ works [Samuel-Cahn '84].
- $T=1 / 2 \cdot \mathbb{E}\left[\max _{i} X_{i}\right]$ works [Kleinberg and Weinberg '12].

Alternative Proof

$$
\begin{aligned}
& X^{*}=\max _{i} X_{i} \\
& p_{i}=\operatorname{Pr}\left[X^{*}=X_{i}\right] \Longrightarrow \sum_{i} p_{i}=1 . \\
& \quad \tau_{i}: \operatorname{Pr}\left[X_{i} \geq \tau_{i}\right]=p_{i} \\
& \quad v_{i}\left(p_{i}\right):=\mathbb{E}\left[X_{i} \mid X_{i} \geq \tau_{i}\right]
\end{aligned}
$$

Alternative Proof

$$
\begin{aligned}
& X^{*}=\max _{i} X_{i} \\
& p_{i}=\operatorname{Pr}\left[X^{*}=X_{i}\right] \Longrightarrow \sum_{i} p_{i}=1 .
\end{aligned}
$$

- $\tau_{i}: \operatorname{Pr}\left[X_{i} \geq \tau_{i}\right]=p_{i}$
- $v_{i}\left(p_{i}\right):=\mathbb{E}\left[X_{i} \mid X_{i} \geq \tau_{i}\right]$
$-\mathbb{E}\left[X^{*}\right] \leq \sum_{i} v_{i}\left(p_{i}\right) \cdot p_{i}$, since $X^{*} \sim \mathcal{D}^{*}$ with marginals \boldsymbol{p}.

Alternative Proof

$$
\begin{aligned}
& X^{*}=\max _{i} X_{i} \\
& p_{i}=\operatorname{Pr}\left[X^{*}=X_{i}\right] \Longrightarrow \sum_{i} p_{i}=1 .
\end{aligned}
$$

- $\tau_{i}: \operatorname{Pr}\left[X_{i} \geq \tau_{i}\right]=p_{i}$
- $v_{i}\left(p_{i}\right):=\mathbb{E}\left[X_{i} \mid X_{i} \geq \tau_{i}\right]$
$-\mathbb{E}\left[X^{*}\right] \leq \sum_{i} v_{i}\left(p_{i}\right) \cdot p_{i}$, since $X^{*} \sim \mathcal{D}^{*}$ with marginals \boldsymbol{p}.

$$
\begin{array}{ll}
\max & \sum_{i} v_{i}\left(z_{i}\right) \cdot z_{i} \\
\text { s.t. } & \sum_{i} z_{i} \leq 1 \tag{1}\\
& 0 \leq z_{i} \leq 1 \quad \forall i
\end{array}
$$

Idea
Reject every random variable X_{i} w.p. $1 / 2$.
Otherwise accept i iff $X_{i} \geq \tau_{i}$ (happens w.p. p_{i}).

$$
\mathbb{E}[A L G]=\sum_{i} \operatorname{Pr}[\text { We reach } i] \cdot 1 / 2 \cdot p_{i} \cdot v_{i}\left(p_{i}\right)
$$

Idea

Reject every random variable X_{i} w.p. 1/2.
Otherwise accept i iff $X_{i} \geq \tau_{i}$ (happens w.p. p_{i}).

$$
\mathbb{E}[A L G]=\sum_{i} \operatorname{Pr}[\text { We reach } i] \cdot 1 / 2 \cdot p_{i} \cdot v_{i}\left(p_{i}\right)
$$

By a union bound,

$$
\operatorname{Pr}[\text { We reach } i] \geq \operatorname{Pr}[\text { We pick nothing }] \geq 1-\sum_{i} \frac{p_{i}}{2} \geq \frac{1}{2}
$$

- $1 / 4$-approximation to $\mathbb{E}\left[X^{*}\right]$. Better?

Idea

Reject every random variable X_{i} w.p. $1 / 2$.
Otherwise accept i iff $X_{i} \geq \tau_{i}$ (happens w.p. p_{i}).

$$
\mathbb{E}[A L G]=\sum_{i} \operatorname{Pr}[\text { We reach } i] \cdot 1 / 2 \cdot p_{i} \cdot v_{i}\left(p_{i}\right)
$$

By a union bound,
$\operatorname{Pr}[$ We reach $i] \geq \operatorname{Pr}[$ We pick nothing $] \geq 1-\sum_{i} \frac{p_{i}}{2} \geq \frac{1}{2}$.

- $1 / 4$-approximation to $\mathbb{E}\left[X^{*}\right]$. Better?

Rewrite

$$
\mathbb{E}[A L G] \geq \sum_{i} r_{i} \cdot q_{i} \cdot p_{i} \cdot v_{i}\left(p_{i}\right)
$$

Can we ensure $r_{i} \cdot q_{i}=1 / 2$?

- $r_{1}=1 \Longrightarrow q_{1}=1 / 2$. Then $r_{i+1}=r_{i}\left(1-q_{i} p_{i}\right)$
- If we set $q_{i}=\frac{1}{2 r_{i}} \Longrightarrow r_{i+1}=r_{i}-\frac{p_{i}}{2}=1-\sum_{j \leq i} \frac{p_{i}}{2} \geq \frac{1}{2}$

How to generalize this?

$$
\begin{array}{ll}
\max & \sum_{i} v_{i}\left(z_{i}\right) \cdot z_{i} \quad \Longrightarrow \quad \max \quad \sum_{i} w_{i} \cdot z_{i} \tag{2}\\
\text { s.t. } & \sum_{i} z_{i} \leq 1 \quad \text { s.t. } \quad \begin{array}{c}
z \in \mathcal{P}(\mathcal{M}) \\
\\
\\
0 \leq z_{i} \leq 1 \quad \forall i
\end{array} \quad \begin{array}{ll}
0 \leq z_{i} \leq 1
\end{array} \quad \forall i
\end{array}
$$

- \boldsymbol{x} : Optimal solution to (2). How to round \boldsymbol{x} ?

How to generalize this?

$$
\begin{array}{lll}
\max & \sum_{i} v_{i}\left(z_{i}\right) \cdot z_{i} \tag{2}\\
\text { s.t. } & \sum_{i} z_{i} \leq 1 \quad \Longrightarrow \quad \max & \sum_{i} w_{i} \cdot z_{i} \\
& 0 \leq z_{i} \leq 1 \quad \forall i & \text { s.t. } \quad z \in \mathcal{P}(\mathcal{M}) \\
& 0 \leq z_{i} \leq 1 \quad \forall i
\end{array}
$$

- \boldsymbol{x} : Optimal solution to (2). How to round \boldsymbol{x} ?

Attempt \#1

Create random set R where $i \in R$ independently w.p. x_{i} (active elements).
($\mathbb{E}\left[\sum_{i \in R} w_{i}\right]=\sum_{i} w_{i} \cdot x_{i}$
7 R might be infeasible

How to generalize this?

Attempt \#2: Contention Resolution Scheme (CRS) π

1. Create random set R where $i \in R$ independently w.p. x_{i}.
2. Drop elements from R to create feasible $\pi(R)$.

- [Chekuri, Vondrák and Zenklusen '11].
c-selectability
CRS is c-selectable if

$$
\operatorname{Pr}[i \in \pi(R) \mid i \in R] \geq c \quad \forall i
$$

- CRS is c-selectable $\Longrightarrow c$-approximation to LP.
- CRSs combine in black-box way for general constraints/objectives.

Contention Resolution Schemes (CRSs)

- Motivation: Submodular Function Maximization
- $f: 2^{\mathcal{N}} \rightarrow \mathbb{R}$ is submodular if $\forall A, B \quad f(A)+f(B) \geq f(A \cup B)+f(A \cap B)$.

Theorem [Chekuri, Vondrák and Zenklusen '11]
There exists a ($1-1 / e$)-selectable CRS for matroid polytopes.

- Intuition: Greedy is optimal for matroids + a differential equality.

Correlation Gap

For constraint $\mathcal{C}=(\mathcal{N}, \mathcal{I})$, let $r_{w}(S)=\max _{T \subseteq S, T \in \mathcal{I}} \sum_{i \in T} w_{i}$.
Correlation Gap
The correlation gap of \mathcal{C} is defined as

$$
\inf _{\boldsymbol{x} \in \mathcal{P}_{\mathcal{C}}, \boldsymbol{w} \geq 0} \frac{\mathbb{E}\left[r_{\boldsymbol{w}}(R(\boldsymbol{x}))\right]}{\sum_{i \in \mathcal{N}} w_{i} x_{i}},
$$

where $i \in R$ independently w.p. $x_{i}, \forall i \in \mathcal{N}$.

Theorem [Chekuri, Vondrák and Zenklusen '11]

The correlation gap of the r_{w} for a constraint \mathcal{C} is the same as the maximum c such that \mathcal{C} admits a c-selectable CRS.

Proving Existence of CRSs via LPs? Very meta!

Fix \boldsymbol{x}, consider all mappings $\phi: 2^{\mathcal{N}} \rightarrow \mathcal{I}$.

```
max c
```

$$
\begin{array}{ll}
\text { s.t. } & \sum_{\phi} \lambda_{\phi} \operatorname{Pr}[i \in \phi(R(\boldsymbol{x})) \mid i \in R(\boldsymbol{x})] \geq c \quad \forall i \in \mathcal{N} \\
& \sum_{\phi} \lambda_{\phi}=1 \\
& \lambda_{\phi} \geq 0 \quad \forall \phi
\end{array}
$$

Dual:

$$
\begin{array}{ll}
\min & \mu \\
\text { s.t. } & \sum_{i \in \mathcal{N}} z_{i} \operatorname{Pr}[i \in \phi(R(\boldsymbol{x})) \mid i \in R(\boldsymbol{x})] \leq \mu \quad \forall \phi \\
& \sum_{i \in \mathcal{N}} z_{i}=1 \\
& z_{i} \geq 0 \quad \forall i \in \mathcal{N}
\end{array}
$$

Strong duality:

$$
\begin{aligned}
O P T & =\min _{z} \max _{\phi} \sum_{i \in \mathcal{N}} z_{i} \operatorname{Pr}[i \in \phi(R(\boldsymbol{x})) \mid i \in R(\boldsymbol{x})] \\
& =\min _{z} \max _{\phi} \sum_{i \in \mathcal{N}} z_{i} \frac{\operatorname{Pr}[i \in \phi(R(\boldsymbol{x}))]}{\operatorname{Pr}[i \in R(\boldsymbol{x})]}
\end{aligned}
$$

Let $w_{i}=\frac{z_{i}}{x_{i}}$, recall that $x_{i}=\operatorname{Pr}[i \in R(\boldsymbol{x})]$.

$$
\begin{aligned}
O P T & =\min _{w: \sum_{i} w_{i} x_{i}=1} \max _{\phi} \sum_{i \in \mathcal{N}} w_{i} \operatorname{Pr}[i \in \phi(R(\boldsymbol{x}))] \\
& =\min _{w: \sum_{i} w_{i} x_{i}=1} \max _{\phi}{\underset{S \leftarrow \phi(R(\boldsymbol{x}))}{\mathbb{E}}\left[\sum_{i \in S} w_{i}\right]}=\min _{w: \sum_{i} w_{i} x_{i}=1} \mathbb{E}\left[r_{w}(R(\boldsymbol{x}))\right] \\
& =\min _{w \geq 0} \frac{\mathbb{E}\left[r_{w}(R(\boldsymbol{x}))\right]}{\sum_{i \in \mathcal{N}} w_{i} x_{i}}
\end{aligned}
$$

Open Problems

- $1-1 / e$ is tight for matroids [Yan '10].

Open Problem
What is the correlation gap for a matching constraint?
$-\geq 0.4326$ [Bruggmann, Zenklusen '20], ≤ 0.544 [Karp, Sipser '81].
$-\geq 0.509$ [Nuti, Vondrák '22], ≤ 0.544 [Karp, Sipser '81] for bipartite matching.

- More questions on knapsack constraints.

Online Contention Resolution Schemes

Online Contention Resolution Scheme (OCRS)
The elements of R (active elements) are revealed to the algorithm one by one in adversarial order.

- [Alaei '11, Feldman, Svensson and Zenklusen '15].
- $\exists 1 / 2$-selectable OCRS for single item (tight). $R=\left\{i \mid X_{i} \geq \tau_{i}\right\}$. Recall we guaranteed $\operatorname{Pr}[i \in \pi(R) \mid i \in R]=r_{i} \cdot q_{i}=1 / 2$.
Why care about OCRSs?

Online Contention Resolution Schemes

Online Contention Resolution Scheme (OCRS)

The elements of R (active elements) are revealed to the algorithm one by one in adversarial order.

- [Alaei '11, Feldman, Svensson and Zenklusen '15].
- $\exists 1 / 2$-selectable OCRS for single item (tight). $R=\left\{i \mid X_{i} \geq \tau_{i}\right\}$. Recall we guaranteed $\operatorname{Pr}[i \in \pi(R) \mid i \in R]=r_{i} \cdot q_{i}=1 / 2$.
Why care about OCRSs?
- c-selectable OCRS for $\mathcal{C} \Longrightarrow c$-approximation to Prophet Inequality with constraint \mathcal{C}.
- c-approximation to (slight variant of) Prophet Inequality for $\mathcal{C} \Longrightarrow c$-selectable OCRS for \mathcal{C}.
Can use prophet inequalities to design optimal OCRSs!

Adversaries

What does the adversary know?

- Offline: Nothing.

1/2-OCRS for single item, 1/2-OCRS for matroids.

Adversaries

What does the adversary know?

- Offline: Nothing. 1/2-OCRS for single item, 1/2-OCRS for matroids.
- Online: Same information as the Algorithm at every step. $1 / 2$-OCRS for single item, $1 / 4$-OCRS for matroids.

Adversaries

What does the adversary know?

- Offline: Nothing. 1/2-OCRS for single item, 1/2-OCRS for matroids.
- Online: Same information as the Algorithm at every step. 1/2-OCRS for single item, 1/4-OCRS for matroids.
- Almighty: All realizations and randomness of the Algorithm. 1/4-OCRS for single item, $1 / 4$-OCRS for matroids.

Adversaries

What does the adversary know?

- Offline: Nothing. 1/2-OCRS for single item, 1/2-OCRS for matroids.
- Online: Same information as the Algorithm at every step. 1/2-OCRS for single item, 1/4-OCRS for matroids.
- Almighty: All realizations and randomness of the Algorithm. 1/4-OCRS for single item, $1 / 4$-OCRS for matroids.

Greedy OCRS (Informal)
Decides (randomly) which elements to select before it sees R.

- Works against almighty adversary.

Adversaries

What does the adversary know?

- Offline: Nothing. 1/2-OCRS for single item, 1/2-OCRS for matroids.
- Online: Same information as the Algorithm. 1/2-OCRS for single item, 1/4-OCRS for matroids.
- Almighty: All realizations and randomness of the Algorithm. 1/4-OCRS for single item, $1 / 4$-OCRS for matroids.

Greedy OCRS (Formal)
Create $\mathcal{F}_{\boldsymbol{x}} \subseteq \mathcal{I}$ before seeing R. When element i arrives, greedily select i iff $i \in R \& S_{i-1}+i \in \mathcal{F}_{\boldsymbol{x}}$.

Adversaries

What does the adversary know?

- Offline: Nothing. 1/2-OCRS for single item, 1/2-OCRS for matroids.
- Online: Same information as the Algorithm. 1/2-OCRS for single item, $1 / 4$-OCRS for matroids.
- Almighty: All realizations and randomness of the Algorithm. $1 / 4 \Longrightarrow 1 / e$-OCRS for single item, $1 / 4$-OCRS for matroids.

Greedy OCRS (Formal)

Create $\mathcal{F}_{\boldsymbol{x}} \subseteq \mathcal{I}$ before seeing R. When element i arrives, greedily select i iff $i \in R \& S_{i-1}+i \in \mathcal{F}_{\boldsymbol{x}}$.

Theorem [L. '22]
$\exists 1 /$-selectable Greedy OCRS for single items, and this is the best possible.

Recall \boldsymbol{x} optimal solution to LP and $\sum_{i} x_{i} \leq 1$ (single item).

Recall \boldsymbol{x} optimal solution to LP and $\sum_{i} x_{i} \leq 1$ (single item).

Idea
Create set T where $i \in T$ independently w.p. $\frac{1-e^{-x_{i}}}{x_{i}}$. Greedily select i if $i \in R \cap T$.

- Simulates "splitting" i into many small elements.

$$
\begin{align*}
\operatorname{Pr}[i \text { is selected }] & =\operatorname{Pr}[i \in T] \cdot \prod_{j<i}(1-\operatorname{Pr}[j \text { is selected }]) \\
& \geq \frac{1-e^{-x_{i}}}{x_{i}} \prod_{j<i}\left(1-x_{j} \cdot \frac{1-e^{-x_{j}}}{x_{j}}\right) \\
& =\frac{1-e^{-x_{i}}}{x_{i}} \prod_{j<i} e^{-x_{j}} \\
& =\frac{1-e^{-x_{i}}}{x_{i}} \cdot e^{-\sum_{j<i} x_{j}} \\
& \geq \frac{\left(1-e^{-x_{i}}\right) e^{x_{i}-1}}{x_{i}} \tag{1}
\end{align*}
$$

(1) is minimized for $x_{i} \rightarrow 0 \Longrightarrow 1 / e$.

- Worst-case is $n \rightarrow \infty$ and $x_{i} \rightarrow 0 \forall i$.
- Idea extends to partition and transversal matroids.

More Open Problems!

1. k-Uniform Matroid:

$$
\begin{array}{ll}
\checkmark & 1-O(1 / \sqrt{k}) \text {-OCRS [Alaei '11] } \\
\checkmark & 1-O(\sqrt{\log k / k}) \text {-Greedy OCRS }
\end{array}
$$

More Open Problems!

1. k-Uniform Matroid:
$\checkmark 1-\mathrm{O}(1 / \sqrt{k})$-OCRS [Alaei '11]
$\checkmark 1-\mathrm{O}(\sqrt{\log k / k})$-Greedy OCRS
2. General Matroid:
\checkmark 1/2-OCRS [Lee, Singla '18]
Open Problem
Can we extend $1 / e-G r e e d y$ OCRS to general matroids?

More Open Problems!

1. k-Uniform Matroid:
$\checkmark 1-\mathrm{O}(1 / \sqrt{k})$-OCRS [Alaei '11]
$\checkmark 1-\mathrm{O}(\sqrt{\log k / k})$-Greedy OCRS
2. General Matroid:
\checkmark 1/2-OCRS [Lee, Singla '18]
Open Problem
Can we extend $1 / e$-Greedy OCRS to general matroids?
3. Matching:

Open Problem
What is the maximum c-OCRS for (bipartite / general) matchings?
$-\geq 0.349$-OCRS for bipartite, ≥ 0.344-OCRS [MacRury, Ma, Grammel '22]

- ≤ 0.433-OCRS for bipartite, $\leq 0.4-$ OCRS [MacRury, Ma, Grammel '22]
- $\geq 1 / 2 e \approx 0.184$-Greedy OCRS [Feldman, Svensson, Zenklusen

Thank You!

Questions?

