Rounding LPs in a “Fair” Way: Many Questions, Few Answers

Vasilis Livanos

livanos3@illinois.edu

University of Illinois Urbana-Champaign

January 18th, 2023
Prophet Inequality

\(X_1, X_2, \ldots, X_n \sim \text{(known)} \ \mathcal{D}_1, \mathcal{D}_2, \ldots, \mathcal{D}_n\) arrive in adversarial order. Decide immediately and irrevocably to select or reject \(X_i\).

▶ Design stopping time to maximize selected value.
▶ Compare against all-knowing prophet: \(\mathbb{E}[\max_i X_i]\).

Prophet Inequality [Krengel, Sucheston and Garling '77, '78]

\(\exists\) stopping strategy that achieves \(\frac{1}{2} \cdot \mathbb{E}[\max_i X_i]\), and this is tight.
Prophet Inequality

$X_1, X_2, \ldots, X_n \sim \text{(known)} \ D_1, D_2, \ldots, D_n$ arrive in adversarial order. Decide immediately and irrevocably to select or reject X_i.

- Design stopping time to maximize selected value.
- Compare against all-knowing prophet: $\mathbb{E}[\max_i X_i]$.

Prophet Inequality [Krengel, Sucheston and Garling ’77, ’78]

\exists stopping strategy that achieves $1/2 \cdot \mathbb{E}[\max_i X_i]$, and this is tight.

- **Idea:** Set threshold T, accept first $X_i \geq T$.
 - $T : \Pr[\max_i X_i \geq T] = 1/2$ works [Samuel-Cahn ’84].
 - $T = 1/2 \cdot \mathbb{E}[\max_i X_i]$ works [Kleinberg and Weinberg ’12].
Alternative Proof

\[X^* = \max_i X_i \]
\[p_i = \Pr[X^* = X_i] \implies \sum_i p_i = 1. \]

- \(\tau_i \): \(\Pr[X_i \geq \tau_i] = p_i \)
- \(v_i(p_i) := \mathbb{E}[X_i \mid X_i \geq \tau_i] \)
Alternative Proof

\[X^* = \max_i X_i \]
\[p_i = \Pr[X^* = X_i] \implies \sum_i p_i = 1. \]

- \(\tau_i \): \(\Pr[X_i \geq \tau_i] = p_i \)
- \(v_i(p_i) := \mathbb{E}[X_i \mid X_i \geq \tau_i] \)
- \(\mathbb{E}[X^*] \leq \sum_i v_i(p_i) \cdot p_i, \)
 since \(X^* \sim \mathcal{D}^* \) with marginals \(p \).
Alternative Proof

\[X^* = \max_i X_i \]
\[p_i = \Pr[X^* = X_i] \implies \sum_i p_i = 1. \]

- \(\tau_i \): \(\Pr[X_i \geq \tau_i] = p_i \)
- \(v_i(p_i) := \mathbb{E}[X_i | X_i \geq \tau_i] \)
- \(\mathbb{E}[X^*] \leq \sum_i v_i(p_i) \cdot p_i, \) since \(X^* \sim D^* \) with marginals \(p \).

\[
\max \sum_i v_i(z_i) \cdot z_i \\
\text{s.t.} \quad \sum_i z_i \leq 1 \quad (1) \\
\quad 0 \leq z_i \leq 1 \quad \forall i
\]
Idea
Reject every random variable X_i w.p. $1/2$.
Otherwise accept i iff $X_i \geq \tau_i$ (happens w.p. p_i).

$$\mathbb{E}[ALG] = \sum_i \Pr[\text{We reach } i] \cdot \frac{1}{2} \cdot p_i \cdot v_i(p_i)$$
Idea
Reject every random variable X_i w.p. $1/2$.
Otherwise accept i iff $X_i \geq \tau_i$ (happens w.p. p_i).

$$
\mathbb{E}[ALG] = \sum_i \Pr[\text{We reach } i] \cdot 1/2 \cdot p_i \cdot v_i(p_i)
$$

By a union bound,

$$
\Pr[\text{We reach } i] \geq \Pr[\text{We pick nothing}] \geq 1 - \sum_i \frac{p_i}{2} \geq \frac{1}{2}.
$$

\blacksquare $1/4$-approximation to $\mathbb{E}[X^*]$. Better?
Idea
Reject every random variable X_i w.p. $1/2$.
Otherwise accept i iff $X_i \geq \tau_i$ (happens w.p. p_i).

\[\mathbb{E}[ALG] = \sum_i \Pr[\text{We reach } i] \cdot \frac{1}{2} \cdot p_i \cdot v_i(p_i) \]

By a union bound,
\[\Pr[\text{We reach } i] \geq \Pr[\text{We pick nothing}] \geq 1 - \sum_i \frac{p_i}{2} \geq \frac{1}{2}. \]

\downarrow 1/4-approximation to $\mathbb{E}[X^*]$. Better?

Rewrite
\[\mathbb{E}[ALG] \geq \sum_i r_i \cdot q_i \cdot p_i \cdot v_i(p_i) \]

Can we ensure $r_i \cdot q_i = 1/2$?

\downarrow $r_1 = 1 \implies q_1 = 1/2$. Then $r_{i+1} = r_i \left(1 - q_ip_i\right)$

\downarrow If we set $q_i = \frac{1}{2r_i} \implies r_{i+1} = r_i - \frac{p_i}{2} = 1 - \sum_{j \leq i} \frac{p_j}{2} \geq \frac{1}{2}$
How to generalize this?

\[
\begin{align*}
\text{max} & \quad \sum_{i} v_i(z_i) \cdot z_i \\
\text{s.t.} & \quad \sum_{i} z_i \leq 1 \quad \Rightarrow \quad \text{s.t.} \quad z \in \mathcal{P}(\mathcal{M}) \\
& \quad 0 \leq z_i \leq 1 \quad \forall i \\
\end{align*}
\]

\[
\begin{align*}
\text{max} & \quad \sum_{i} w_i \cdot z_i \\
\text{s.t.} & \quad 0 \leq z_i \leq 1 \quad \forall i
\end{align*}
\]

▶ \(x \): Optimal solution to (2). How to round \(x \)?
How to generalize this?

$$\max \sum_i v_i(z_i) \cdot z_i \quad \text{s.t.} \quad \sum_i z_i \leq 1 \quad 0 \leq z_i \leq 1 \quad \forall i$$

\implies

$$\max \sum_i w_i \cdot z_i \quad \text{s.t.} \quad z \in P(M) \quad 0 \leq z_i \leq 1 \quad \forall i$$

$\blacktriangleright \quad x$: Optimal solution to (2). How to round x?

Attempt #1

Create random set R where $i \in R$ independently w.p. x_i (*active elements*).

- $\mathbb{E}[\sum_{i \in R} w_i] = \sum_i w_i \cdot x_i$
- R might be infeasible
How to generalize this?

Attempt #2: Contention Resolution Scheme (CRS) π

1. Create random set R where $i \in R$ independently w.p. x_i.
2. Drop elements from R to create feasible $\pi(R)$.

- [Chekuri, Vondrák and Zenklusen ’11].

c-selectability

CRS is c-selectable if

$$\Pr [i \in \pi(R) \mid i \in R] \geq c \quad \forall i.$$

- CRS is c-selectable \implies c-approximation to LP.
- CRSs combine in black-box way for general constraints/objectives.
Motivation: Submodular Function Maximization

$f : 2^\mathcal{N} \to \mathbb{R}$ is submodular if
\[\forall A, B \quad f(A) + f(B) \geq f(A \cup B) + f(A \cap B). \]

Theorem [Chekuri, Vondrák and Zenklusen ’11]
There exists a $(1 - 1/e)$-selectable CRS for matroid polytopes.

Intuition: Greedy is optimal for matroids + a differential equality.
Correlation Gap

For constraint $C = (\mathcal{N}, \mathcal{I})$, let $r_w(S) = \max_{T \subseteq S, T \in \mathcal{I}} \sum_{i \in T} w_i$.

The correlation gap of C is defined as

$$\inf_{x \in \mathcal{P}_C, w \geq 0} \frac{\mathbb{E}[r_w(R(x))]}{\sum_{i \in \mathcal{N}} w_i x_i},$$

where $i \in R$ independently w.p. x_i, $\forall i \in \mathcal{N}$.

Theorem [Chekuri, Vondrák and Zenklusen ’11]

The correlation gap of the r_w for a constraint C is the same as the maximum c such that C admits a c-selectable CRS.
Fix \mathbf{x}, consider all mappings $\phi : 2^\mathcal{N} \to \mathcal{I}$.

$$\begin{align*}
\text{max} \quad & c \\
\text{s.t.} \quad & \sum_{\phi} \lambda_\phi \Pr [i \in \phi(R(\mathbf{x})) \mid i \in R(\mathbf{x})] \geq c \quad \forall i \in \mathcal{N} \\
& \sum_{\phi} \lambda_\phi = 1 \\
& \lambda_\phi \geq 0 \quad \forall \phi
\end{align*}$$

Dual:

$$\begin{align*}
\text{min} \quad & \mu \\
\text{s.t.} \quad & \sum_{i \in \mathcal{N}} z_i \Pr [i \in \phi(R(\mathbf{x})) \mid i \in R(\mathbf{x})] \leq \mu \quad \forall \phi \\
& \sum_{i \in \mathcal{N}} z_i = 1 \\
& z_i \geq 0 \quad \forall i \in \mathcal{N}
\end{align*}$$
Strong duality:

\[\text{OPT} = \min_z \max_{\phi} \sum_{i \in \mathcal{N}} z_i \Pr [i \in \phi(R(x)) \mid i \in R(x)] \]

\[= \min_z \max_{\phi} \sum_{i \in \mathcal{N}} z_i \frac{\Pr [i \in \phi(R(x))]}{\Pr [i \in R(x)]}. \]

Let \(w_i = \frac{z_i}{x_i} \), recall that \(x_i = \Pr [i \in R(x)] \).

\[\text{OPT} = \min_{w: \sum_i w_i x_i = 1} \max_{\phi} \sum_{i \in \mathcal{N}} w_i \Pr [i \in \phi(R(x))] \]

\[= \min_{w: \sum_i w_i x_i = 1} \max_{\phi} \mathbb{E} \left[\sum_{i \in S} w_i \right] \]

\[= \min_{w: \sum_i w_i x_i = 1} \mathbb{E}[r_w(R(x))] \]

\[= \min_{w \geq 0} \frac{\mathbb{E}[r_w(R(x))]}{\sum_{i \in \mathcal{N}} w_i x_i}. \]
1 − 1/e is tight for matroids [Yan ’10].

Open Problem

What is the correlation gap for a matching constraint?

- ≥ 0.4326 [Bruggmann, Zenklusen ’20], ≤ 0.544 [Karp, Sipser ’81].
- ≥ 0.509 [Nuti, Vondrák ’22], ≤ 0.544 [Karp, Sipser ’81] for bipartite matching.
- More questions on knapsack constraints.
Online Contention Resolution Scheme (OCRS)

The elements of R (active elements) are revealed to the algorithm one by one in adversarial order.

- [Alaei '11, Feldman, Svensson and Zenklusen '15].
- $\exists 1/2$-selectable OCRS for single item (tight). $R = \{i \mid X_i \geq \tau_i\}$.

Recall we guaranteed $\Pr [i \in \pi(R) \mid i \in R] = r_i \cdot q_i = 1/2$.

Why care about OCRSs?
Online Contention Resolution Scheme (OCRS)

The elements of R (active elements) are revealed to the algorithm one by one in adversarial order.

- [Alaei ’11, Feldman, Svensson and Zenklusen ’15].
- $\exists 1/2$-selectable OCRS for single item (tight). $R = \{i \mid X_i \geq \tau_i\}$.

Recall we guaranteed $\Pr[i \in \pi(R) \mid i \in R] = r_i \cdot q_i = 1/2$.

Why care about OCRSs?

- c-selectable OCRS for $C \implies c$-approximation to Prophet Inequality with constraint C.
- c-approximation to (slight variant of) Prophet Inequality for $C \implies c$-selectable OCRS for C.

Can use prophet inequalities to design optimal OCRSs!
What does the adversary know?

- **Offline**: Nothing.
 - ½-OCRS for single item, ½-OCRS for matroids.

- **Online**: Same information as the Algorithm at every step.
 - ½-OCRS for single item, ¼-OCRS for matroids.

- ** Almighty**: All realizations and randomness of the Algorithm.
 - ¼-OCRS for single item, ¼-OCRS for matroids.
Adversaries

What does the adversary know?

- **Offline**: Nothing.
 \(\frac{1}{2}\)-OCRS for single item, \(\frac{1}{2}\)-OCRS for matroids.

- **Online**: Same information as the Algorithm at every step.
 \(\frac{1}{2}\)-OCRS for single item, \(\frac{1}{4}\)-OCRS for matroids.
Adversaries

What does the adversary know?

- **Offline**: Nothing.
 $\frac{1}{2}$-OCR for single item, $\frac{1}{2}$-OCR for matroids.

- **Online**: Same information as the Algorithm at every step.
 $\frac{1}{2}$-OCR for single item, $\frac{1}{4}$-OCR for matroids.

- **Almighty**: All realizations and randomness of the Algorithm.
 $\frac{1}{4}$-OCR for single item, $\frac{1}{4}$-OCR for matroids.
Adversaries

What does the adversary know?

▶ Offline: Nothing.
 1/2-OCRS for single item, 1/2-OCRS for matroids.

▶ Online: Same information as the Algorithm at every step.
 1/2-OCRS for single item, 1/4-OCRS for matroids.

▶ Almighty: All realizations and randomness of the Algorithm.
 1/4-OCRS for single item, 1/4-OCRS for matroids.

Greedy OCRS (Informal)
Decides (randomly) which elements to select before it sees R.

▶ Works against almighty adversary.
Adversaries

What does the adversary know?

- **Offline:** Nothing.
 - 1/2-OCRS for single item, 1/2-OCRS for matroids.

- **Online:** Same information as the Algorithm.
 - 1/2-OCRS for single item, 1/4-OCRS for matroids.

- **Almighty:** All realizations and randomness of the Algorithm.
 - 1/4-OCRS for single item, 1/4-OCRS for matroids.

Greedy OCRS (Formal)

Create $\mathcal{F}_x \subseteq \mathcal{I}$ before seeing R. When element i arrives, greedily select i iff $i \in R \& S_{i-1} + i \in \mathcal{F}_x$.
Adversaries

What does the adversary know?

▶ **Offline**: Nothing.
 1/2-OCRS for single item, 1/2-OCRS for matroids.

▶ **Online**: Same information as the Algorithm.
 1/2-OCRS for single item, 1/4-OCRS for matroids.

▶ **Almighty**: All realizations and randomness of the Algorithm.
 1/4 \implies 1/e-OCRS for single item, 1/4-OCRS for matroids.

Greedy OCRS (Formal)

Create $\mathcal{F}_x \subseteq \mathcal{I}$ before seeing R. When element i arrives, greedily select i iff $i \in R$ & $S_{i-1} + i \in \mathcal{F}_x$.

Theorem [L. ’22]

\exists 1/e-selectable Greedy OCRS for single items, and this is the best possible.
Recall x optimal solution to LP and $\sum_i x_i \leq 1$ (single item).
Recall x optimal solution to LP and $\sum_i x_i \leq 1$ (single item).

Idea
Create set T where $i \in T$ independently w.p. $1 - e^{-x_i} x_i$.
Greedily select i if $i \in R \cap T$.

- Simulates ”splitting” i into many small elements.
Pr[i is selected] = Pr[i ∈ T] · \(\prod_{j<i} (1 - \Pr[j \text{ is selected}]) \)

\[
\geq \frac{1 - e^{-x_i}}{x_i} \prod_{j<i} \left(1 - x_j \cdot \frac{1 - e^{-x_j}}{x_j} \right)
\]

\[
= \frac{1 - e^{-x_i}}{x_i} \prod_{j<i} e^{-x_j}
\]

\[
= \frac{1 - e^{-x_i}}{x_i} \cdot e^{-\sum_{j<i} x_j}
\]

\[
\geq \frac{(1 - e^{-x_i}) e^{x_i-1}}{x_i}
\]

(1) is minimized for \(x_i \to 0 \implies 1/e. \)

- Worst-case is \(n \to \infty \) and \(x_i \to 0 \ \forall i. \)

- Idea extends to partition and transversal matroids.
More Open Problems!

1. k-Uniform Matroid:
 ✓ $1 - O\left(\frac{1}{\sqrt{k}}\right)$-OCRS [Alaei ‘11]
 ✓ $1 - O\left(\sqrt{\frac{\log k}{k}}\right)$-Greedy OCRS

2. General Matroid:
 ✓ $\frac{1}{2}$-OCRS [Lee, Singla ‘18]

Open Problem
Can we extend $\frac{1}{e}$-Greedy OCRS to general matroids?

3. Matching:
 Open Problem
 What is the maximum c-OCRS for (bipartite / general) matchings?

 ▶ $\geq \frac{349}{344}$-OCRS for bipartite,

 ▶ $\leq \frac{433}{4}$-OCRS [MacRury, Ma, Grammel ‘22]

 ▶ $\geq \frac{1}{2}e \approx 0.184$-Greedy OCRS [Feldman, Svensson, Zenklusen ‘16]
More Open Problems!

1. *k*-Uniform Matroid:
 - ✓ $1 - O\left(\frac{1}{\sqrt{k}}\right)$-OCRS [Alaei '11]
 - ✓ $1 - O\left(\sqrt{\log\frac{k}{k}}\right)$-Greedy OCRS

2. General Matroid:
 - ✓ $1/2$-OCRS [Lee, Singla '18]

Open Problem

Can we extend $1/e$-Greedy OCRS to general matroids?
More Open Problems!

1. **k-Uniform Matroid:**
 - ✓ $1 - O\left(\frac{1}{\sqrt{k}}\right)$-OCRS [Alaei ’11]
 - ✓ $1 - O\left(\sqrt{\frac{\log k}{k}}\right)$-Greedy OCRS

2. **General Matroid:**
 - ✓ $\frac{1}{2}$-OCRS [Lee, Singla ’18]

Open Problem

Can we extend $\frac{1}{e}$-Greedy OCRS to general matroids?

3. **Matching:**

Open Problem

What is the maximum c-OCRS for (bipartite / general) matchings?

- ≥ 0.349-OCRS for bipartite, ≥ 0.344-OCRS [MacRury, Ma, Grammel ’22]
- ≤ 0.433-OCRS for bipartite, ≤ 0.4-OCRS [MacRury, Ma, Grammel ’22]
- ≥ $\frac{1}{2e} \approx 0.184$-Greedy OCRS [Feldman, Svensson, Zenklusen ’16]
Thank You!

Questions?