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Prophet Inequality

X1, X2, ..., X, ~ (known) D1, D5, ..., D, arrive in adversarial order.

Decide immediately and irrevocably to select or reject X;.
» Design stopping time to maximize selected value.
» Compare against all-knowing prophet: E[max; Xj].

Prophet Inequality

3 stopping strategy that achieves 1/2 - E[max; Xj],
and this is tight.
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Prophet Inequality

X1, X2, ..., X, ~ (known) D1, D5, ..., D, arrive in adversarial order.

Decide immediately and irrevocably to select or reject X;.
» Design stopping time to maximize selected value.
» Compare against all-knowing prophet: E[max; Xj].

Prophet Inequality
3 stopping strategy that achieves 1/2 - E[max; Xj],
and this is tight.

» Idea: Set threshold T, accept first X; > T.

> T :Pr[max; X; > T] = 1/2 works
> T =1/2. E[max; X;] works
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Alternative Proof
X* = max,-X,-
pi = Pt’[)(>|< = X,] — Z,-p,' =1.
> T PI’[X,' > ’7','] = pi
> V,'(p,') = E[X, ‘ X,' Z 7','] //
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Alternative Proof

X* = max,-X,-
pi = Pt’[)(>|< = X,] — Z,-p,' =1.

> T PI’[X,' > ’7','] = pi
> V,'(p,') = E[X, ‘ X,' Z 7','] //

> E[X*] < 32 vilpi) - pi

since X* ~ D* with marginals p.
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Alternative Proof

X* = max; X,'

pi = Pr[X* = X,] — Z,-p,' =1.
> 7 Pr[XI- > 7-,-] = p; "
> vi(pi) =E[Xi | X; = ] yd

> E[X*] <32 vilpi) - pi,
since X* ~ D* with marginals p.
max Z vi(z;) - z; 0
i
st. Y z<1 (1)

i
OSZ,'S]. Vi
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Idea
Reject every random variable X; w.p. 1/2.
Otherwise accept i iff X; > 7; (happens w.p. p;).

E[ALG] = Z Pr[We reach i] - 1/2- p; - vi(p;i)
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Idea
Reject every random variable X; w.p. 1/2.
Otherwise accept i iff X; > 7; (happens w.p. p;).

E[ALG] = Z Pr[We reach i] - 1/2- p; - vi(p;i)
By a union bound,

Pr[We reach i] > Pr[We pick nothing] > 1 — Z

i

B
Y

» 1/s-approximation to E[X*]. Better?

N
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Idea
Reject every random variable X; w.p. 1/2.
Otherwise accept i iff X; > 7; (happens w.p. p;).

E[ALG] = Z Pr[We reach i] - 1/2- p; - vi(p;i)

By a union bound,

i 1
Pr[We reach i] > Pr[We pick nothing] > 1 — Z';’ > 5>
» 1/s-approximation to E[X*]. Better?
Rewrite
E[ALG] > ri-qi - pi - vi(pi)
i
Can we ensure r; - g; = 1/27
> n=1= q1 =12 Then rip1 = ri (1 — qipi)
> Ifwesetq;:%ri = rip=r—-5=1- ngi%z%
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How to generalize this?

max > vi(z) -z max Y wi-z

s.t. szgl = st. zeP(M)
OSZ;S]. VI

» x: Optimal solution to (2). How to round x?
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How to generalize this?

max > vi(z) -z max Y wi-z

s.t. Zz,- <1 = st. zeP(M) (2)
0<z<1 Vi .

» x: Optimal solution to (2). How to round x?

Attempt #1
Create random set R where i € R independently w.p. x;
(active elements).

€& B[ icrwil=wi X
® R might be infeasible
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How to generalize this?

Attempt #2: Contention Resolution Scheme (CRS) 7

1. Create random set R where i € R independently w.p. x;.

2. Drop elements from R to create feasible 7(R).
>

c-selectability
CRS is c-selectable if

Prlien(R)|ie Rl>c Vi

» CRS is c-selectable = c-approximation to LP.

» CRSs combine in black-box way for general
constraints/objectives.
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Contention Resolution Schemes (CRSs)

» Motivation: Submodular Function Maximization

> f:2V 5 R is submodular if
VA, B f(A)+f(B) > f(AUB)+ f(AN B).

Theorem

There exists a (1 — 1/e)-selectable CRS for matroid polytopes.

» Intuition: Greedy is optimal for matroids + a differential
equality.
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Correlation Gap

For constraint C = (N, Z), let ry(S) = maxrcs 17ez > ic T Wi

Correlation Gap
The correlation gap of C is defined as

o El(R))
xEPc,w>0 Zie/\/ Wi Xj ’

where i € R independently w.p. x;, Vi € N.

Theorem

The correlation gap of the r,, for a constraint C is the same as the
maximum ¢ such that C admits a c-selectable CRS.
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Proving Existence of CRSs via LPs? Very metal

Fix x, consider all mappings ¢ : N T

max ¢
st. YoM Prlic ¢(R(x)) i€ R(x)|>c VieN

Ypre =1

Ao >0 Vo
Dual:

min  u
st. YienziPrlie o(R(x))|ie R(x)]|<p Vo
2ienzi=1

zi>0 Vie N
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Strong duality:

OPT = min max Z ziPr[i € ¢(R(x)) | i € R(x)]
ieN
_ Prli € ¢(R(x))]
= min max Z Pl € Rix)|

Let w; = Z, recall that x; = Pr[i € R(x)].

OPT = min  max Z w; Pr[i € ¢(R(x))]

W:Zi wixi=1 ieN
= min max w;
W:Zi wixi=1 S<—¢(R [IGZS ]
= min  E[rw(R(x))]

w: W,‘X,‘*

(R

w>0 Z,GN W, X;
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Open Problems

» 1 —1/eis tight for matroids

Open Problem

What is the correlation gap for a matching constraint?

> > 0.4326 , <0.544
> > 0.509 , < 0.544 for

bipartite matching.

> More questions on knapsack constraints.
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Online Contention Resolution Schemes

Online Contention Resolution Scheme (OCRS)
The elements of R (active elements) are revealed to the algorithm
one by one in adversarial order.

>

» J1/2-selectable OCRS for single item (tight). R = {i | X; > 7;}.
Recall we guaranteed Pr[i € 7(R)|i € R] = r; - q; = 1/2.

Why care about OCRSs?
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Online Contention Resolution Schemes

Online Contention Resolution Scheme (OCRS)
The elements of R (active elements) are revealed to the algorithm
one by one in adversarial order.
> .
» J1/>-selectable OCRS for single item (tight). R = {i | X; > 7;}.
Recall we guaranteed Pr{i € w(R)|i € R] = r; - qi = /2.
Why care about OCRSs?

» c-selectable OCRS for C = c-approximation to Prophet
Inequality with constraint C.

> c-approximation to (slight variant of) Prophet Inequality for
C = c-selectable OCRS for C.
Can use prophet inequalities to design optimal OCRSs!
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Adversaries

What does the adversary know?

» Offline: Nothing.
1/2-OCRS for single item, 1/2-OCRS for matroids.
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Adversaries

What does the adversary know?

» Offline: Nothing.
1/2-OCRS for single item, 1/2-OCRS for matroids.

» Online: Same information as the Algorithm at every step.

1/2-OCRS for single item, 1/4-OCRS for matroids.
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Adversaries

What does the adversary know?

» Offline: Nothing.
1/2-OCRS for single item, 1/2-OCRS for matroids.

» Online: Same information as the Algorithm at every step.
1/2-OCRS for single item, 1/4-OCRS for matroids.

» Almighty: All realizations and randomness of the Algorithm.
1/4-OCRS for single item, 1/4-OCRS for matroids.
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Adversaries

What does the adversary know?

» Offline: Nothing.
1/2-OCRS for single item, 1/2-OCRS for matroids.

» Online: Same information as the Algorithm at every step.
1/2-OCRS for single item, 1/4-OCRS for matroids.

» Almighty: All realizations and randomness of the Algorithm.
1/4-OCRS for single item, 1/4-OCRS for matroids.

Greedy OCRS (Informal)

Decides (randomly) which elements to select before it sees R.

» Works against almighty adversary.
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Adversaries

What does the adversary know?

> Offline: Nothing.
1/2-OCRS for single item, 1/2-OCRS for matroids.

» Online: Same information as the Algorithm.
1/2-OCRS for single item, 1/4-OCRS for matroids.

» Almighty: All realizations and randomness of the Algorithm.
1/4-OCRS for single item, 1/4-OCRS for matroids.

Greedy OCRS (Formal)

Create Fx C 7 before seeing R. When element i arrives, greedily
select jiff i€ R & Si_1+ i€ Fx.
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Adversaries

What does the adversary know?

» Offline: Nothing.
1/2-OCRS for single item, 1/2-OCRS for matroids.

» Online: Same information as the Algorithm.
1/2-OCRS for single item, 1/4-OCRS for matroids.

> Almighty: All realizations and randomness of the Algorithm.
1/4 = 1/ -OCRS for single item, 1/4-OCRS for matroids.
Greedy OCRS (Formal)
Create Fx C T before seeing R. When element i arrives, greedily
select i iff i € R & S;_1+i € Fy.
Theorem

J1/e-selectable Greedy OCRS for single items, and this is the best
possible.
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Recall x optimal solution to LP and >; x; < 1 (single item).
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Recall x optimal solution to LP and >; x; < 1 (single item).

Idea
Create set T where i € T independently w.p.
Greedily select i if ie RN T.

l1—e™%i
Xi :

» Simulates "splitting” i into many small elements.
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Pr[i is selected] = Pr[i € T] - H (1 — Pr[j is selected])

j<i
1—e% 1—e%
> (1
X i X
1—e%
|
J<i
_ X
— 176 e j<i ¥
Xj
(1—e )it

Xj

(1) is minimized for x; — 0 = 1/e.
» Worst-case is n — oo and x; — 0 VI.
P |dea extends to partition and transversal matroids.
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More Open Problems!

1. k-Uniform Matroid:
v 1—-0(1/vk)-OCRS

/1-0 (\/mgk k)—Greedy OCRS
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More Open Problems!

1. k-Uniform Matroid:

v 1—0(1/vx)-OCRS

/1-0 (W)-Greedy OCRS
2. General Matroid:

/' 1/2-0CRS

Open Problem
Can we extend 1/e-Greedy OCRS to general matroids?
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More Open Problems!
1. k-Uniform Matroid:
v 1—0(Y/v%)-OCRS

/1-0 (\/log k/k)—Greedy OCRS
2. General Matroid:
/' 1/2-0CRS

Open Problem

Can we extend 1/e-Greedy OCRS to general matroids?
3. Matching:

Open Problem

What is the maximum c-OCRS for (bipartite / general) matchings?
» > 0.349-OCRS for bipartite, > 0.344-OCRS

» < 0.433-OCRS for bipartite, < 0.4-OCRS

> > 1/2¢ ~ 0.184-Greedy OCRS
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Thank You!

Questions?

1

)
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