Combinatorial Optimization under Uncertainty
and Prophet Inequalities

Vasilis Livanos

livanos3Q@illinois.edu

Department of Computer Science
University of Illinois Urbana-Champaign

Partially based on joint work with

Chandra Chekuri Ruta Mehta

November 23rd, 2022

1/54



KiLovoLT
MAGIC

fnterest 0 you. Maybe they spak an de
pen Sesame.Scion of s s
for use n the manufactue of ha

Now York's lower Eut

MATHEMATICAL GAMES

A fi

th collection

of “brain-teasers”

by Martin Gardner

v g monds or s s de-
partment presents an assortment
o Shart proiems. draun from

oo mathenatidflds T s the
ith such colecton. The answers o the
problems wilbe gven e st month
who i

e i of dovol from one
ense sy Same prn

verbal pranks on the
oy i o sy s

ours, witha Sorensen

g yerybody'seard bout
T paciage sk o s o o0 e
leton A new v sysem prevers il

e st load has high capactance, o
tesing can ofen efet substantal saving.
Tna typies problem, & 250.wat, 4 ester
replaced » 25 kva ac tester with cqual

sull,on-fourth he cos, and 3 1001 reduc.
on i ligh i,

gh-volag orlow,you'lfind that Sorea-
b e e v ot contoidpover

Ricard Ave. Soth Norwak, Conn o 04
cnumnu.zn

Sorcnsenm _ Pol

— rnonucrs

T —

150

ind the
,mm.m, blocked by an unwarranted s

1

Mel Stover of Wi

g was the st

ecae o the e wilh hich oven the

triangle into_ smaller triangles, all of
them aeute? (An acute tiangle is

ciguiringe slwion, o pergs a0
even beter one. 1 am unable to prove
fhat cight s the minimum, though |
onghy suspectthat it .

)

In I, G. Welle's novel The First M
inthe Moon ous naturalsatellte s found

rface aeea, if expressed. in

Siuare anar, exael equalsthe moor'’s
vn\umc i i T, The mon's
s, How many miles

gt
3.

In 1958 John H. Fox, Jr., o the Min
neapolis Honeywell Regiator Co., and
Cerald Marnie of the Massachusetts
Lnsitte of Technology devised an un
vl g game heh they cal Con-
ol s played s ollows A e
sips of paper s he

esss andon xchiparhe s
postie“mamber. The mumbers may
Tange from small fractions of ane to
mber the S o "ol (1 ol

A vight
angle is of ouse et s nor o
tse.) 1 this camot be done, give o

oo of s 1 1 con b done,

what i the smallest mumber of scute

wiangles o which any bt ingle
e

e et s igh o i
calattempt tht leads nowhere. The tri-
ngie has b diided i he seutc
g, bt the ot s o,
nothing has been gained by the
coing eut.
his delghl problems e me b sk

mysel s the smallest mumber of
o
b dissected?™ For days [ was convinced
that nine was the answer; then suddernly
T saae how to reduce it o cight. 1 won-

der how many readers can discover an

o
lowed by & hundeed seros) or ever
larger face. ‘\4,“,,
and shofled aver he top of 3 table
ata time you tum the sips face-up, The
aim i to op turing when you come to
the number that you guess to be the
e e i S otz bk
and pi tumed sl
oo e ot
You must pick the last one tumed.
Most people will suppose the odds

o hi riansi b cut it acuts nes?

Secretary Problem

» n unknown values
X1y.-.4,Xn
» Random order
» Step i:
1. Select x; and stop
2. Ignore x; and continue

Pr[We select max; x;]?
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Secretary Problem

X1

X2 th‘

Xn/241 e Xp—1

51 52
Sampling Phase Selection Phase

W.p. 1/27 Xik S 52

1>1
w.p. 12 x5 e 51} = Pr[We select m;_axx,] > 1/a.
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Secretary Problem

X1 X2 e XW2‘

Xn/2+]_ PN an]_

51 Eb
Sampling Phase Selection Phase

w.p. 12, xfeS

1>1
w.p. 12 x5 e 51} = Pr[We select m;_axx,] > 1/a.

» Can get /e (optimal) by sampling first n/e.
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Prophet Inequality

What if we know something about the x;'s?

Xl, X2, ceny X ~ (known) Dl,Dz, NN ,Dn
arrive in adversarial order.

» Design stopping time to maximize selected value.
» Compare against all-knowing prophet: E[max; Xj].
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U[2,4]

U[2,4]

X1 =3.29

Ul1, s|

U0,
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U[2,4]

U[2,4]

X1 = 3.29

Xy = 3.46

Ul1, s|

U0,
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U[2,4]

U[2,4]

X1 = 3.29

Xy = 3.46

Ul1, s|

U0,

X3 =2.94

9/54



U2, 4] U2, 4] Ul1, s| U0,

X1 =3.29 Xy = 3.46 X3 =294 X4 =2.76

10/54



Prophet Inequality
3 stopping strategy that achieves 1/2 - E[max; Xj],
and this is tight.

1
Xi=1 wp. 1, and Xo = fe wp. €
0 wp l—c¢

E [ALG] = 1 for all algorithms.
Elmax; X]=1-e+1-(1-¢)=2—c¢.

€
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Prophet Inequality
3 stopping strategy that achieves 1/2 - E[max; Xj],
and this is tight.

1
Xi=1 wp. 1, and Xo = fe wp. €
0 wp l—c¢

E [ALG] =1 for all algorithms.
E[max; Xj]=1-e+1-(1—¢)=2—¢.
> Idea: Set threshold T, accept first X; > T.

> T :Pr[max; X; > T] = 1/2 works
> T =1/2- E[max; X;] works
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Why should we care?

We want to sell a banana to one of n buyers to maximize welfare.
» Option 1: Collect bids b;, sell to highest bidder.
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Why should we care?

We want to sell a banana to one of n buyers to maximize welfare.
» Option 1: Collect bids b;, sell to highest bidder.

» Option 2: Become a grocer!

Plan:

1. Set price p.
2. Leave store.
3. 77?

4. Profit.
Price p <= Threshold T in Pl
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Why should we care?

We want to sell a banana to one of n buyers to maximize welfare.
» Option 1: Collect bids b;, sell to highest bidder.

» Option 2: Become a grocer!

Plan:
1. Set price p.

2. Leave store.
3. 777

4. Profit.
Price p <= Threshold T in Pl

What about maximizing revenue?
Use “virtual valuations” to design T: ¢(v) = v —
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Why should we care?

» Posted prices apply when buyers arrive online.

» Lots of past work on this and extensions:
>

VVVVYYVYY
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Proof
X* = max,-X,-
pi = Pt’[)(>|< = X,] — Z,-p,' =1.
> T PI’[X,' > ’7','] = pi
> V,'(p,') = E[X, ‘ X,' Z 7','] //
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Proof

X* = max,-X,-
pi = Pr[X* = X,] — Z,-p,' =1.

> 70 Pr[Xi > 7i] = pi
> vi(pi) =E[Xi | Xi > 7]

> E[X*] < 32 vilpi) - pi

since X* ~ D* with marginals p.
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Proof

X* = max,-X,-
pi = Pr[X* = X,] — Z,-p,' =1.

> 7t PrXi > 7] = pi e
> vi(pi) =E[Xi | Xi > 7] //

> E[X*] <32 vilpi) - pi,
since X* ~ D* with marginals p.
max Z vi(z;) - z; 0
i
st. Y z<1 (1)

i
0<z<p Vi
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Idea
Reject every random variable X; w.p. 1/2.
Otherwise accept i iff X; > 7; (happens w.p. p;).

E[ALG] = Z Pr[We reach i] - 1/2- p; - vi(p;i)
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Idea
Reject every random variable X; w.p. 1/2.
Otherwise accept i iff X; > 7; (happens w.p. p;).

E[ALG] = Z Pr[We reach i] - 1/2- p; - vi(p;i)
By a union bound,

Pr[We reach i] > Pr[We pick nothing] > 1 — Z

i

B
Y

» 1/s-approximation to E[X*].

N
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Idea
Reject every random variable X; w.p. 1/2.
Otherwise accept i iff X; > 7; (happens w.p. p;).

E[ALG] = Z Pr[We reach i] - 1/2- p; - vi(p;i)

By a union bound,

i1
Pr[We reach i] > Pr[We pick nothing] > 1 — Z';’ > 5>
» 1/s-approximation to E[X*].
Rewrite
E[ALG] > ri-qi - pi - vi(pi)
i
Can we ensure r; - g; = 1/27
> n=1= q1 =12 Then rip1 = ri (1 — qipi)
> Ifwesetq;:%ri = rip=r—-5=1- ngi%z%
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How to generalize this?

max > vi(z) -z max Y wi-z

s.t. Zzi =1 = st zePWM) (2)
Zj > 0 Vi .

» Let x be an optimal solution to (2). How should we round x?
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How to generalize this?

max > vi(z) -z max Y wi-z

s.t. Zzi =1 = st zePWM) (2)
Zj > 0 Vi .

» Let x be an optimal solution to (2). How should we round x?

Attempt #1
Create random set R where i € R independently w.p. x;
(active elements).

€& B[ icrwil=wi X
® R might be infeasible
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How to generalize this?

Attempt #2: Contention Resolution Scheme (CRS)

1. Create random set R where i € R independently w.p. x;.

2. Drop elements from R to create feasible S.

>
» CRS is c-selectable if

Prlie S|ieR]>c Vi

» If CRS is c-selectable = c-approximation.

v

Observe R offline = (1 — 1/e)-selectable CRS for single item.

v

Combine in black-box way for general constraints/objectives.
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Online Contention Resolution Schemes

Online Contention Resolution Scheme (OCRS)
The elements of R (active elements) are revealed to the algorithm
one by one in adversarial order.

>

» J1/>-selectable OCRS for single item (tight). R = {i | X; > 7;}.
Recall we guaranteed Pr{i€ S|i€ R|=r;-qi =1/2.

Why care about OCRSs?
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Online Contention Resolution Schemes

Online Contention Resolution Scheme (OCRS)
The elements of R (active elements) are revealed to the algorithm
one by one in adversarial order.
> .
» J1/>-selectable OCRS for single item (tight). R = {i | X; > 7;}.
Recall we guaranteed Pr{i€ S|i€ R|=r;-qi =1/2.
Why care about OCRSs?

» c-selectable OCRS for C = c-approximation to Prophet
Inequality with constraint C.

> c-approximation to (slight variant of) Prophet Inequality for
C = c-selectable OCRS for C.
Can use prophet inequalities to design optimal OCRSs!
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Adversaries

What does the adversary know?

» Offline: Nothing.
1/2-OCRS for single item, 1/2-OCRS for matroids.
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Adversaries

What does the adversary know?

» Offline: Nothing.
1/2-OCRS for single item, 1/2-OCRS for matroids.

» Online: Same information as the Algorithm at every step.

1/2-OCRS for single item, 1/4-OCRS for matroids.
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1/2-OCRS for single item, 1/2-OCRS for matroids.

» Online: Same information as the Algorithm at every step.
1/2-OCRS for single item, 1/4-OCRS for matroids.

» Almighty: All realizations and randomness of the Algorithm.
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Adversaries

What does the adversary know?

» Offline: Nothing.
1/2-OCRS for single item, 1/2-OCRS for matroids.

» Online: Same information as the Algorithm at every step.
1/2-OCRS for single item, 1/4-OCRS for matroids.

» Almighty: All realizations and randomness of the Algorithm.
1/4-OCRS for single item, 1/4-OCRS for matroids.

Greedy OCRS (Informal)

Decides (randomly) which elements to select before it sees R.

» Works against almighty adversary.
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Adversaries

What does the adversary know?

> Offline: Nothing.
1/2-OCRS for single item, 1/2-OCRS for matroids.

» Online: Same information as the Algorithm.
1/2-OCRS for single item, 1/4-OCRS for matroids.

» Almighty: All realizations and randomness of the Algorithm.
1/4-OCRS for single item, 1/4-OCRS for matroids.

Greedy OCRS (Formal)

Create Fx C 7 before seeing R. When element i arrives, greedily
select jiff i€ R & Si_1+ i€ Fx.

33/54



Adversaries

What does the adversary know?

» Offline: Nothing.
1/2-OCRS for single item, 1/2-OCRS for matroids.

» Online: Same information as the Algorithm.
1/2-OCRS for single item, 1/4-OCRS for matroids.

> Almighty: All realizations and randomness of the Algorithm.
1/4 = 1/ -OCRS for single item, 1/4-OCRS for matroids.
Greedy OCRS (Formal)
Create Fx C T before seeing R. When element i arrives, greedily
select i iff i € R & S;_1+i € Fy.
Theorem

J1/e-selectable Greedy OCRS for single items, and this is the best
possible.
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Recall x optimal solution to LP and >; x; < 1 (single item).
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Recall x optimal solution to LP and >; x; < 1 (single item).

Idea
Create set T where i € T independently w.p.
Greedily select i if ie RN T.

l1—e™%i
Xi :

» Simulates "splitting” i into many small elements.
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Pr[i is selected] = Pr[i € T] - H (1 — Pr[j is selected])

j<i
1—e% 1—e%
> (1
X i X
1—e%
|
J<i
_ X
— 176 e j<i ¥
Xj
(1—e )it

Xj

(1) is minimized for x; — 0 = 1/e.
» Worst-case is n — oo and x; — 0 VI.
P |dea extends to partition and transversal matroids.
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Variants

What if...
» arrival order is random?
Prophet Secretary: (1 — 1/¢)-ROCRS and =~ 0.669-PI.

[Esfandiari, Hajiaghayi, Liaghat and Monemizadeh '15]
[Correa, Saona and Ziliotto '20]

» arrival order is chosen?
Free-Order: (1 —1/¢)-CRS and ~ 0.7258-PlI.
[Bubna and Chiplunkar '22]

> Xi,..., X, "~ D?
LLD.: (1 —1/¢)-CRS and ~ 0.745-Pl.

[Hill and Kertz '82]
[Correa, Foncea, Hoeksma, Oosterwijk and Vredeveld '21]
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Extensions to Multiple Items

1. k-Uniform Matroid:
/ 1—0(Yvk)-OCRS
/1-0 (\/logk/ )-Greedy OCRS
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Extensions to Multiple Items

1. k-Uniform Matroid:

/ 1—0(Yvk)-OCRS

/1-0 (W)-Greedy OCRS
2. General Matroid:

v 1/2-OCRS

? 1/a-Greedy OCRS
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Extensions to Multiple Items

1. k-Uniform Matroid:

/ 1—0(Yvk)-OCRS

/1-0 (W)-Greedy OCRS
2. General Matroid:

v 1/2-OCRS

? 1/a-Greedy OCRS
3. Bipartite Matching:

? 0.349-OCRS
? 1/2¢ &2 0.184-Greedy OCRS
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Extensions to Multiple Items

. k-Uniform Matroid:

v 1—0(Yvk)-OCRS

/1-0 (\/logk k)-Greedy OCRS

. General Matroid:

v 1/2-OCRS
? 1/a-Greedy OCRS
. Bipartite Matching:

? 0.349-OCRS
? 1/2¢ &2 0.184-Greedy OCRS

. General Matching:

? 0.344-OCRS
? 1/2¢ & 0.184-Greedy OCRS
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Extensions to Multiple Items

. k-Uniform Matroid:

/ 1—0(Yvk)-OCRS
/1-0 (\/logk k)-Greedy OCRS
. General Matroid:

v 1/2-OCRS

? 1/a-Greedy OCRS

. Bipartite Matching:

? 0.349-OCRS

? 1/2¢ &2 0.184-Greedy OCRS
. General Matching:

? 0.344-0OCRS

? 1/2¢ 2 0.184-Greedy OCRS

. Results extend also to submodular objective functions.
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Cost Minimization

» Objective: Minimize selected value, compare against E[min; X].

» Forced to select an element = upwards-closed constraint.
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Cost Minimization

» Objective: Minimize selected value, compare against E[min; X].
» Forced to select an element = upwards-closed constraint.

» No bounded approximation for adversarial or random order!

1
X, =1wp. 1, P R
0 wp 1-—¢

E[ALG] 1

E[min{Xs, Xo}] ¢

» What about I.1.D.?
Intuition:
Set T =2 - E[min; Xi].
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Cost Minimization

» Objective: Minimize selected value, compare against E[min; X].
» Forced to select an element = upwards-closed constraint.
» No bounded approximation for adversarial or random order!

1
X, =1wp. 1, X, = 4/ wp €
0 wp 1-—¢

E[ALG] 1
E[min{Xsz}] a I

» What about I.1.D.?
{ntuition False Intuition:
Set T=2- ]E[min,- X,]
» Doesn't work! Pr[We are forced to select X,] — 1.
» Optimal single threshold T = © (polylog n)-approximation.
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Is Cost Minimization hopeless?

Analyze the optimal algorithm. Set 7;, accept first X; < 7;.
Intuition: 73 = E[OPTALG 41, 4]. How to analyze it?
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Is Cost Minimization hopeless?

Analyze the optimal algorithm. Set 7;, accept first X; < 7;.
Intuition: 73 = E[OPTALG 41, 4]. How to analyze it?

Idea
Look at "fatness” of D's tail. Captured by D's Hazard Rate.

MHR Distribution

h is increasing.

» Important subclass, lots of past work by economists.

Good guarantees in many applications (e.g. revenue
maximization in auctions).
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Theorem
For every entire distribution, there exists an optimal c-approximate
cost minimization prophet inequality for single items.

» c is distribution-dependent. Can be arbitrarily large.

» Use of hazard rate in prophet inequalities as analysis tool is
new.

» For MHR distributions = ¢ = 2-approximation.
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Theorem
For every entire distribution, there exists an optimal c-approximate
cost minimization prophet inequality for single items.

» c is distribution-dependent. Can be arbitrarily large.

» Use of hazard rate in prophet inequalities as analysis tool is
new.

» For MHR distributions = ¢ = 2-approximation.

Let H(x) = [ h(u) du (Cumulative Hazard Rate).

Entire Distribution
D is entire if H has convergent series expansion H(x) = %2, a;x¢
(where 0 < di < dy < ...) for every x in the support of D.

> E.g. uniform, exponential, Gaussian, Weibull, Rayleigh, beta,
gamma
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(L+3/8)"
c(dh) = Tt a) :@<e/ )

» [: Gamma function. I'(n+ 1) = n!l.
> cis tight for D with H(x) = x%
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(L+3/8)"
c(dh) = Tt a) :@<e/ )

» [: Gamma function. I'(n+ 1) = n!l.
> cis tight for D with H(x) = x%

Why only for entire distributions?

Equal-Revenue Distribution:

F(x) =1 —1/x. E[X] = +o0, but E[min{X1, X2}] < +o0.

H(x) = log x and its power series converges only for x < 2.
>
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Open Problems

» Extend 1/e-selectable Greedy OCRS to general matroids.

» Tight approximations for rank-1 prophet secretary and
free-order prophet inequality.

» Tight OCRSs for matchings.
» Extend cost Pl to other constraints.

» Many more...
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Thank You!

Questions?

1

)
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