Combinatorial Optimization under Uncertainty and Prophet Inequalities

November 23rd, 2022

Secretary Problem

- n unknown values

$$
x_{1}, \ldots, x_{n}
$$

- Random order
- Step i :

1. Select x_{i} and stop
2. Ignore x_{i} and continue
$\operatorname{Pr}\left[\right.$ We select $\left.\max _{i} x_{i}\right]$?

Secretary Problem

| x_{1} | x_{2} | \cdots | $x_{n / 2}$ |
| :--- | :--- | :--- | :--- | | $x_{n / 2}+1$ | \cdots | x_{n-1} | x_{n} |
| :--- | :--- | :--- | :--- | :--- |

S_{1}
Sampling Phase
S_{2}
Selection Phase
$\left.\begin{array}{ll}\text { w.p. } 1 / 2, & x_{1}^{*} \in S_{2} \\ \text { w.p. } 1 / 2, & x_{2}^{*} \in S_{1}\end{array}\right\} \Longrightarrow \operatorname{Pr}\left[\right.$ We select $\left.\max _{i} x_{i}\right] \geq 1 / 4$.

Secretary Problem

| x_{1} | x_{2} | \cdots | $x_{n} / 2$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | | $x_{n / 2+1}$ | \cdots | x_{n-1} | x_{n} |
| :--- | :--- | :--- | :--- |

S_{1}

Sampling Phase
S_{2}
Selection Phase

$$
\left.\begin{array}{ll}
\text { w.p. } 1 / 2, & x_{1}^{*} \in S_{2} \\
\text { w.p. } 1 / 2, & x_{2}^{*} \in S_{1}
\end{array}\right\} \Longrightarrow \operatorname{Pr}\left[\text { We select } \max _{i} x_{i}\right] \geq 1 / 4 .
$$

- Can get $1 / e$ (optimal) by sampling first n / e.

Prophet Inequality

What if we know something about the x_{i} 's?
[Krengel, Sucheston and Garling '77]
$X_{1}, X_{2}, \ldots, X_{n} \sim($ known $) \mathcal{D}_{1}, \mathcal{D}_{2}, \ldots, \mathcal{D}_{n}$ arrive in adversarial order.

- Design stopping time to maximize selected value.
- Compare against all-knowing prophet: $\mathbb{E}\left[\max _{i} X_{i}\right]$.

Prophet Inequality [Krengel, Sucheston and Garling '77, '78]

\exists stopping strategy that achieves $1 / 2 \cdot \mathbb{E}\left[\max _{i} X_{i}\right]$, and this is tight.

$$
X_{1}=1 \quad \text { w.p. } 1, \text { and } X_{2}= \begin{cases}1 / \varepsilon & \text { w.p. } \varepsilon \\ 0 & \text { w.p. } 1-\varepsilon\end{cases}
$$

$\mathbb{E}[\mathrm{ALG}]=1$ for all algorithms.
$\mathbb{E}\left[\max _{i} X_{i}\right]=\frac{1}{\varepsilon} \cdot \varepsilon+1 \cdot(1-\varepsilon)=2-\varepsilon$.

Prophet Inequality [Krengel, Sucheston and Garling '77, '78]

\exists stopping strategy that achieves $1 / 2 \cdot \mathbb{E}\left[\max _{i} X_{i}\right]$, and this is tight.

$$
X_{1}=1 \quad \text { w.p. } 1, \text { and } X_{2}= \begin{cases}1 / \varepsilon & \text { w.p. } \varepsilon \\ 0 & \text { w.p. } 1-\varepsilon\end{cases}
$$

$\mathbb{E}[\mathrm{ALG}]=1$ for all algorithms.
$\mathbb{E}\left[\max _{i} X_{i}\right]=\frac{1}{\varepsilon} \cdot \varepsilon+1 \cdot(1-\varepsilon)=2-\varepsilon$.

- Idea: Set threshold T, accept first $X_{i} \geq T$.
- $T: \operatorname{Pr}\left[\max _{i} X_{i} \geq T\right]=1 / 2$ works [Samuel-Cahn '84].
- $T=1 / 2 \cdot \mathbb{E}\left[\max _{i} X_{i}\right]$ works [Kleinberg and Weinberg '12].

Why should we care?

We want to sell a banana to one of n buyers to maximize welfare.

- Option 1: Collect bids b_{i}, sell to highest bidder.

Why should we care?

We want to sell a banana to one of n buyers to maximize welfare.

- Option 1: Collect bids b_{i}, sell to highest bidder.

Why should we care?

We want to sell a banana to one of n buyers to maximize welfare.

- Option 1: Collect bids b_{i}, sell to highest bidder.
- Option 2: Become a grocer!

Plan:

1. Set price p.
2. Leave store.
3. ???
4. Profit.

Price $p \Longleftrightarrow$ Threshold T in PI

Why should we care?

We want to sell a banana to one of n buyers to maximize welfare.

- Option 1: Collect bids b_{i}, sell to highest bidder.
- Option 2: Become a grocer!

Plan:

1. Set price p.
2. Leave store.
3. ???
4. Profit.

Price $p \Longleftrightarrow$ Threshold T in PI

What about maximizing revenue?
Use "virtual valuations" to design $T: \phi(v)=v-\frac{1-F(v)}{f(v)}$.
[Myerson '81]

Why should we care?

- Posted prices apply when buyers arrive online.
- Lots of past work on this and extensions:
- [Hajiaghayi, Kleinberg and Sandholm '07]
- [Chawla, Hartline, Malec and Sivan '10]
- [Alaei '11]
- [Feldman, Gravin and Lucier '15]
- [Dütting, Feldman, Kesselheim and Lucier '16]
- [Correa, Foncea, Pizarro and Verdugo '19]
- [Assadi, Kesselheim and Singla '21]

Proof

$$
\begin{aligned}
& X^{*}=\max _{i} X_{i} \\
& p_{i}=\operatorname{Pr}\left[X^{*}=X_{i}\right] \Longrightarrow \sum_{i} p_{i}=1 . \\
& \quad \tau_{i}: \operatorname{Pr}\left[X_{i} \geq \tau_{i}\right]=p_{i} \\
& \quad v_{i}\left(p_{i}\right):=\mathbb{E}\left[X_{i} \mid X_{i} \geq \tau_{i}\right]
\end{aligned}
$$

Proof

$$
\begin{aligned}
& X^{*}=\max _{i} X_{i} \\
& p_{i}=\operatorname{Pr}\left[X^{*}=X_{i}\right] \Longrightarrow \sum_{i} p_{i}=1 . \\
& \quad \tau_{i}: \operatorname{Pr}\left[X_{i} \geq \tau_{i}\right]=p_{i} \\
& \\
& v_{i}\left(p_{i}\right):=\mathbb{E}\left[X_{i} \mid X_{i} \geq \tau_{i}\right] \\
& \\
& \mathbb{E}\left[X^{*}\right] \leq \sum_{i} v_{i}\left(p_{i}\right) \cdot p_{i},
\end{aligned}
$$

since $X^{*} \sim \mathcal{D}^{*}$ with marginals \boldsymbol{p}.

Proof

$$
\begin{aligned}
& X^{*}=\max _{i} X_{i} \\
& p_{i}=\operatorname{Pr}\left[X^{*}=X_{i}\right] \Longrightarrow \sum_{i} p_{i}=1 .
\end{aligned}
$$

- $\tau_{i}: \operatorname{Pr}\left[X_{i} \geq \tau_{i}\right]=p_{i}$
- $v_{i}\left(p_{i}\right):=\mathbb{E}\left[X_{i} \mid X_{i} \geq \tau_{i}\right]$
$-\mathbb{E}\left[X^{*}\right] \leq \sum_{i} v_{i}\left(p_{i}\right) \cdot p_{i}$,
since $X^{*} \sim \mathcal{D}^{*}$ with marginals \boldsymbol{p}.

$$
\begin{array}{ll}
\max & \sum_{i} v_{i}\left(z_{i}\right) \cdot z_{i} \\
\text { s.t. } & \sum_{i} z_{i} \leq 1 \tag{1}\\
& 0 \leq z_{i} \leq p_{i} \quad \forall i
\end{array}
$$

Idea
Reject every random variable X_{i} w.p. $1 / 2$.
Otherwise accept i iff $X_{i} \geq \tau_{i}$ (happens w.p. p_{i}).

$$
\mathbb{E}[A L G]=\sum_{i} \operatorname{Pr}[\text { We reach } i] \cdot 1 / 2 \cdot p_{i} \cdot v_{i}\left(p_{i}\right)
$$

Idea

Reject every random variable X_{i} w.p. 1/2.
Otherwise accept i iff $X_{i} \geq \tau_{i}$ (happens w.p. p_{i}).

$$
\mathbb{E}[A L G]=\sum_{i} \operatorname{Pr}[\text { We reach } i] \cdot 1 / 2 \cdot p_{i} \cdot v_{i}\left(p_{i}\right)
$$

By a union bound,

$$
\operatorname{Pr}[\text { We reach } i] \geq \operatorname{Pr}[\text { We pick nothing }] \geq 1-\sum_{i} \frac{p_{i}}{2} \geq \frac{1}{2}
$$

- $1 / 4$-approximation to $\mathbb{E}\left[X^{*}\right]$.

Idea

Reject every random variable X_{i} w.p. $1 / 2$.
Otherwise accept i iff $X_{i} \geq \tau_{i}$ (happens w.p. p_{i}).

$$
\mathbb{E}[A L G]=\sum_{i} \operatorname{Pr}[\text { We reach } i] \cdot 1 / 2 \cdot p_{i} \cdot v_{i}\left(p_{i}\right)
$$

By a union bound,
$\operatorname{Pr}[$ We reach $i] \geq \operatorname{Pr}[$ We pick nothing $] \geq 1-\sum_{i} \frac{p_{i}}{2} \geq \frac{1}{2}$.

- $1 / 4$-approximation to $\mathbb{E}\left[X^{*}\right]$.

Rewrite

$$
\mathbb{E}[A L G] \geq \sum_{i} r_{i} \cdot q_{i} \cdot p_{i} \cdot v_{i}\left(p_{i}\right)
$$

Can we ensure $r_{i} \cdot q_{i}=1 / 2$?

- $r_{1}=1 \Longrightarrow q_{1}=1 / 2$. Then $r_{i+1}=r_{i}\left(1-q_{i} p_{i}\right)$
- If we set $q_{i}=\frac{1}{2 r_{i}} \Longrightarrow r_{i+1}=r_{i}-\frac{p_{i}}{2}=1-\sum_{j \leq i} \frac{p_{i}}{2} \geq \frac{1}{2}$

How to generalize this?

$$
\begin{array}{lll}
\max & \sum_{i} v_{i}\left(z_{i}\right) \cdot z_{i} \tag{2}\\
\text { s.t. } & \sum_{i} z_{i} \leq 1 \\
& z_{i} \geq 0 \quad \forall i
\end{array} \quad \begin{array}{ll}
& \max \\
\sum_{i} & w_{i} \cdot z_{i} \\
\text { s.t. } & z \in \mathcal{P}(\mathcal{M}) \\
& 0 \leq z_{i} \leq 1 \quad \forall i
\end{array}
$$

- Let \boldsymbol{x} be an optimal solution to (2). How should we round \boldsymbol{x} ?

How to generalize this?

$$
\begin{array}{lll}
\max & \sum_{i} v_{i}\left(z_{i}\right) \cdot z_{i} \tag{2}\\
\text { s.t. } & \sum_{i} z_{i} \leq 1 \\
& z_{i} \geq 0 \quad \forall i
\end{array} \quad \begin{array}{ll}
\max & \sum_{i} w_{i} \cdot z_{i} \\
\text { s.t. } & z \in \mathcal{P}(\mathcal{M}) \\
& 0 \leq z_{i} \leq 1 \quad \forall i
\end{array}
$$

- Let \boldsymbol{x} be an optimal solution to (2). How should we round \boldsymbol{x} ?

Attempt \#1

Create random set R where $i \in R$ independently w.p. x_{i} (active elements).
$\mathcal{E}\left[\sum_{i \in R} w_{i}\right]=\sum_{i} w_{i} \cdot x_{i}$
7 R might be infeasible

How to generalize this?

Attempt \#2: Contention Resolution Scheme (CRS)

1. Create random set R where $i \in R$ independently w.p. x_{i}.
2. Drop elements from R to create feasible S.

- [Chekuri, Vondrák and Zenklusen '11].
- CRS is c-selectable if

$$
\operatorname{Pr}[i \in S \mid i \in R] \geq c \quad \forall i
$$

- If CRS is c-selectable $\Longrightarrow c$-approximation.
- Observe R offline $\Longrightarrow(1-1 / e)$-selectable CRS for single item.
- Combine in black-box way for general constraints/objectives.

Online Contention Resolution Schemes

Online Contention Resolution Scheme (OCRS)
The elements of R (active elements) are revealed to the algorithm one by one in adversarial order.

- [Alaei '11, Feldman, Svensson and Zenklusen '15].
- $\exists 1 / 2$-selectable OCRS for single item (tight). $R=\left\{i \mid X_{i} \geq \tau_{i}\right\}$. Recall we guaranteed $\operatorname{Pr}[i \in S \mid i \in R]=r_{i} \cdot q_{i}=1 / 2$.
Why care about OCRSs?

Online Contention Resolution Schemes

Online Contention Resolution Scheme (OCRS)

The elements of R (active elements) are revealed to the algorithm one by one in adversarial order.

- [Alaei '11, Feldman, Svensson and Zenklusen '15].
- $\exists 1 / 2$-selectable OCRS for single item (tight). $R=\left\{i \mid X_{i} \geq \tau_{i}\right\}$. Recall we guaranteed $\operatorname{Pr}[i \in S \mid i \in R]=r_{i} \cdot q_{i}=1 / 2$.
Why care about OCRSs?
- c-selectable OCRS for $\mathcal{C} \Longrightarrow c$-approximation to Prophet Inequality with constraint \mathcal{C}.
- c-approximation to (slight variant of) Prophet Inequality for $\mathcal{C} \Longrightarrow c$-selectable OCRS for \mathcal{C}.
Can use prophet inequalities to design optimal OCRSs!

Adversaries

What does the adversary know?

- Offline: Nothing.

1/2-OCRS for single item, 1/2-OCRS for matroids.

Adversaries

What does the adversary know?

- Offline: Nothing. 1/2-OCRS for single item, 1/2-OCRS for matroids.
- Online: Same information as the Algorithm at every step. $1 / 2$-OCRS for single item, $1 / 4$-OCRS for matroids.

Adversaries

What does the adversary know?

- Offline: Nothing. 1/2-OCRS for single item, 1/2-OCRS for matroids.
- Online: Same information as the Algorithm at every step. 1/2-OCRS for single item, 1/4-OCRS for matroids.
- Almighty: All realizations and randomness of the Algorithm. 1/4-OCRS for single item, $1 / 4$-OCRS for matroids.

Adversaries

What does the adversary know?

- Offline: Nothing. 1/2-OCRS for single item, 1/2-OCRS for matroids.
- Online: Same information as the Algorithm at every step. 1/2-OCRS for single item, 1/4-OCRS for matroids.
- Almighty: All realizations and randomness of the Algorithm. 1/4-OCRS for single item, $1 / 4$-OCRS for matroids.

Greedy OCRS (Informal)
Decides (randomly) which elements to select before it sees R.

- Works against almighty adversary.

Adversaries

What does the adversary know?

- Offline: Nothing. 1/2-OCRS for single item, 1/2-OCRS for matroids.
- Online: Same information as the Algorithm. 1/2-OCRS for single item, 1/4-OCRS for matroids.
- Almighty: All realizations and randomness of the Algorithm. 1/4-OCRS for single item, $1 / 4$-OCRS for matroids.

Greedy OCRS (Formal)
Create $\mathcal{F}_{\boldsymbol{x}} \subseteq \mathcal{I}$ before seeing R. When element i arrives, greedily select i iff $i \in R \& S_{i-1}+i \in \mathcal{F}_{\boldsymbol{x}}$.

Adversaries

What does the adversary know?

- Offline: Nothing. 1/2-OCRS for single item, 1/2-OCRS for matroids.
- Online: Same information as the Algorithm. 1/2-OCRS for single item, $1 / 4$-OCRS for matroids.
- Almighty: All realizations and randomness of the Algorithm. $1 / 4 \Longrightarrow 1 / e$-OCRS for single item, $1 / 4$-OCRS for matroids.

Greedy OCRS (Formal)

Create $\mathcal{F}_{\boldsymbol{x}} \subseteq \mathcal{I}$ before seeing R. When element i arrives, greedily select i iff $i \in R \& S_{i-1}+i \in \mathcal{F}_{\boldsymbol{x}}$.

Theorem [L. '22]
$\exists 1 /$-selectable Greedy OCRS for single items, and this is the best possible.

Recall \boldsymbol{x} optimal solution to LP and $\sum_{i} x_{i} \leq 1$ (single item).

Recall \boldsymbol{x} optimal solution to LP and $\sum_{i} x_{i} \leq 1$ (single item).

Idea
Create set T where $i \in T$ independently w.p. $\frac{1-e^{-x_{i}}}{x_{i}}$. Greedily select i if $i \in R \cap T$.

- Simulates "splitting" i into many small elements.

$$
\begin{align*}
\operatorname{Pr}[i \text { is selected }] & =\operatorname{Pr}[i \in T] \cdot \prod_{j<i}(1-\operatorname{Pr}[j \text { is selected }]) \\
& \geq \frac{1-e^{-x_{i}}}{x_{i}} \prod_{j<i}\left(1-x_{j} \cdot \frac{1-e^{-x_{j}}}{x_{j}}\right) \\
& =\frac{1-e^{-x_{i}}}{x_{i}} \prod_{j<i} e^{-x_{j}} \\
& =\frac{1-e^{-x_{i}}}{x_{i}} \cdot e^{-\sum_{j<i} x_{j}} \\
& \geq \frac{\left(1-e^{-x_{i}}\right) e^{x_{i}-1}}{x_{i}} \tag{1}
\end{align*}
$$

(1) is minimized for $x_{i} \rightarrow 0 \Longrightarrow 1 / e$.

- Worst-case is $n \rightarrow \infty$ and $x_{i} \rightarrow 0 \forall i$.
- Idea extends to partition and transversal matroids.

Variants

What if...

- arrival order is random?
$\left.\frac{\text { Prophet Secretary: }}{\text { [Esfandiari, Hajiaghayi, Liaghat and Monemizadeh '15] }} 1-1 / e\right)$-ROCRS and $\approx 0.669-\mathrm{PI}$.
[Correa, Saona and Ziliotto '20]
- arrival order is chosen?

Free-Order: $(1-1 / e)$-CRS and $\approx 0.7258-\mathrm{PI}$.
[Bubna and Chiplunkar '22]

- $X_{1}, \ldots, X_{n} \stackrel{\text { i.i.d. }}{\sim} \mathcal{D}$?
I.I.D.: $(1-1 / e)-C R S$ and $\approx 0.745-\mathrm{PI}$.
[Hill and Kertz '82]
[Correa, Foncea, Hoeksma, Oosterwijk and Vredeveld '21]

Extensions to Multiple Items

1. k-Uniform Matroid:

$$
\begin{aligned}
& \checkmark 1-O(1 / \sqrt{k})-\text { OCRS } \\
& \checkmark 1-O(\sqrt{\log k / k}) \text {-Greedy OCRS }
\end{aligned}
$$

Extensions to Multiple Items

1. k-Uniform Matroid:

$$
\begin{aligned}
& \checkmark 1-O(1 / \sqrt{k})-\text { OCRS } \\
& \checkmark 1-O(\sqrt{\log k / k}) \text {-Greedy OCRS }
\end{aligned}
$$

2. General Matroid:
$\checkmark 1 / 2$-OCRS
? 1/4-Greedy OCRS

Extensions to Multiple Items

1. k-Uniform Matroid:

$$
\checkmark 1-O(1 / \sqrt{k}) \text {-OCRS }
$$

$$
\checkmark 1-\mathrm{O}(\sqrt{\log k / k}) \text {-Greedy OCRS }
$$

2. General Matroid:
$\checkmark 1 / 2$-OCRS
? 1/4-Greedy OCRS
3. Bipartite Matching:
? 0.349-OCRS
? $1 / 2 e \approx 0.184$-Greedy OCRS

Extensions to Multiple Items

1. k-Uniform Matroid:
$\checkmark 1-\mathrm{O}(1 / \sqrt{k})$-OCRS
$\checkmark 1-\mathrm{O}(\sqrt{\log k / k})$-Greedy OCRS
2. General Matroid:
$\checkmark 1 / 2$-OCRS
? 1/4-Greedy OCRS
3. Bipartite Matching:
? 0.349-OCRS
? $1 / 2 e \approx 0.184$-Greedy OCRS
4. General Matching:
? 0.344-OCRS
? $1 / 2 e \approx 0.184$-Greedy OCRS

Extensions to Multiple Items

1. k-Uniform Matroid:
$\checkmark 1-\mathrm{O}(1 / \sqrt{k})$-OCRS
$\checkmark 1-\mathrm{O}(\sqrt{\log k / k})$-Greedy OCRS
2. General Matroid:
$\checkmark 1 / 2$-OCRS
? 1/4-Greedy OCRS
3. Bipartite Matching:
? 0.349-OCRS
? $1 / 2 e \approx 0.184$-Greedy OCRS
4. General Matching:
? 0.344-OCRS
? $1 / 2 e \approx 0.184$-Greedy OCRS
5. Results extend also to submodular objective functions.

Cost Minimization

- Objective: Minimize selected value, compare against $\mathbb{E}\left[\min _{i} X_{i}\right]$.
- Forced to select an element \Longrightarrow upwards-closed constraint.

Cost Minimization

- Objective: Minimize selected value, compare against $\mathbb{E}\left[\min _{i} X_{i}\right]$.
- Forced to select an element \Longrightarrow upwards-closed constraint.
- No bounded approximation for adversarial or random order!

$$
\begin{gathered}
X_{1}=1 \text { w.p. } 1, \quad X_{2}=\left\{\begin{array}{lll}
1 / \varepsilon & \text { w.p. } & \varepsilon \\
0 & \text { w.p. } & 1-\varepsilon
\end{array}\right. \\
\frac{\mathbb{E}[A L G]}{\mathbb{E}\left[\min \left\{X_{1}, X_{2}\right\}\right]}=\frac{1}{\varepsilon}
\end{gathered}
$$

- What about I.I.D.?

Intuition:
Set $T=2 \cdot \mathbb{E}\left[\min _{i} X_{i}\right]$.

Cost Minimization

- Objective: Minimize selected value, compare against $\mathbb{E}\left[\min _{i} X_{i}\right]$.
- Forced to select an element \Longrightarrow upwards-closed constraint.
- No bounded approximation for adversarial or random order!

$$
\begin{gathered}
X_{1}=1 \text { w.p. } 1, \quad X_{2}=\left\{\begin{array}{lll}
1 / \varepsilon & \text { w.p. } & \varepsilon \\
0 & \text { w.p. } & 1-\varepsilon
\end{array}\right. \\
\frac{\mathbb{E}[A L G]}{\mathbb{E}\left[\min \left\{X_{1}, X_{2}\right\}\right]}=\frac{1}{\varepsilon}
\end{gathered}
$$

- What about I.I.D.?

Intuition False Intuition:
Set $T=2 \cdot \mathbb{E}\left[\min _{i} X_{i}\right]$.

- Doesn't work! $\operatorname{Pr}\left[\right.$ We are forced to select $\left.X_{n}\right] \rightarrow 1$.
- Optimal single threshold $T \Longrightarrow \Theta$ (polylog n)-approximation.

Is Cost Minimization hopeless?

Analyze the optimal algorithm. Set τ_{i}, accept first $X_{i} \leq \tau_{i}$. Intuition: $\tau_{i}=\mathbb{E}\left[\right.$ OPTALG $\left._{i+1, \ldots, n}\right]$. How to analyze it?

Is Cost Minimization hopeless?

Analyze the optimal algorithm. Set τ_{i}, accept first $X_{i} \leq \tau_{i}$. Intuition: $\tau_{i}=\mathbb{E}\left[\right.$ OPTALG $\left._{i+1, \ldots, n}\right]$. How to analyze it?

Idea
Look at "fatness" of \mathcal{D} 's tail. Captured by \mathcal{D} 's Hazard Rate.

$$
h(x)=\frac{f(x)}{1-F(x)}
$$

MHR Distribution
h is increasing.

- Important subclass, lots of past work by economists. Good guarantees in many applications (e.g. revenue maximization in auctions).

Theorem [L.-Mehta '22]

For every entire distribution, there exists an optimal c-approximate cost minimization prophet inequality for single items.

- c is distribution-dependent. Can be arbitrarily large.
- Use of hazard rate in prophet inequalities as analysis tool is new.
- For MHR distributions $\Longrightarrow c=2$-approximation.

Theorem [L.-Mehta '22]

For every entire distribution, there exists an optimal c-approximate cost minimization prophet inequality for single items.

- c is distribution-dependent. Can be arbitrarily large.
- Use of hazard rate in prophet inequalities as analysis tool is new.
- For MHR distributions $\Longrightarrow c=2$-approximation.

$$
\text { Let } H(x)=\int_{0}^{x} h(u) d u \text { (Cumulative Hazard Rate). }
$$

Entire Distribution
\mathcal{D} is entire if H has convergent series expansion $H(x)=\sum_{i=1}^{\infty} a_{i} x^{d_{i}}$
(where $0<d_{1}<d_{2}<\ldots$) for every x in the support of \mathcal{D}.

- E.g. uniform, exponential, Gaussian, Weibull, Rayleigh, beta, gamma

$$
c\left(d_{1}\right)=\frac{\left(1+1 / d_{1}\right)^{1 / d_{1}}}{\Gamma\left(1+1 / d_{1}\right)}=\Theta\left(e^{1 / d_{1}}\right)
$$

- 「: Gamma function. $\Gamma(n+1)=n$!.
- c is tight for \mathcal{D} with $H(x)=x^{d_{1}}$

$$
c\left(d_{1}\right)=\frac{\left(1+1 / d_{1}\right)^{1 / d_{1}}}{\Gamma\left(1+1 / d_{1}\right)}=\Theta\left(e^{1 / d_{1}}\right)
$$

- Γ : Gamma function. $\Gamma(n+1)=n$!.
- c is tight for \mathcal{D} with $H(x)=x^{d_{1}}$

Why only for entire distributions?
Equal-Revenue Distribution:
$F(x)=1-1 / x . \mathbb{E}[X]=+\infty$, but $\mathbb{E}\left[\min \left\{X_{1}, X_{2}\right\}\right]<+\infty$.
$H(x)=\log x$ and its power series converges only for $x \leq 2$.

- [Lucier '22]

Open Problems

- Extend $1 / e$-selectable Greedy OCRS to general matroids.
- Tight approximations for rank-1 prophet secretary and free-order prophet inequality.
- Tight OCRSs for matchings.
- Extend cost PI to other constraints.
- Many more...

Thank You!

Questions?

