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KILOVOLT 
MAGIC 

Sorensen is a maker of power supplies and 
doesn't make any of the "end-use" equip
ment mentioned below. Yet, some of these 
applications of Sorensen equipment by our 
customers are so novel that they may be of 
interest to you. Maybe they'll spark an idea: 

Open Sesame. Selection of sesame seeds 
for use in the manufacture of halvah-a fa
vorite confection of New York's lower East 
Side - was the job of kilovolts from one 
Sorensen Series 200 supply. Same principle 
can purify other grains and cereals, tobacco, 
and low-grade ores. 

Gold From Air. Gold spun off into thin air 
from a grinding or buffing wheel can quickly 
cause cash to vanish. Ditto with platinum or 
other precious metals. Clever Sorensen cus
tomers are putting this pay dirt back into 
the pay roll with an electrostatic recovery 
system-powered, of course, with a Sorensen 
h-v supply. 

Ignition damper. Everybody's heard about 
the high-voltage spark that sets off an ex
plosion. A new h-v system prevents explo
sions. High-voltage-from a Sorensen 9000 
Series -precipitates a sample of potentially 
explosive dusts; an alarm is given long be
fore the concentration becomes dangerous. 

Vanishing Volt.Amps. Dielectric testing 
with a-c is more or less standard. (Sorensen 
offers a complete line of h-v a-c testers, con
forming to ASTM standards.) However, 
where the test load has high capacitance, d-c 
testing can often effect substantial savings. 
In a typical problem, a 250-watt, d-c tester 
replaced a 25 kva a-c tester with equal re
sults, one-fourth the cost, and a 100: 1 reduc
tion in light bills. 

High-voltage or low, you'll find that Soren
sen has the answer to your controlled power 
problems. In addition to high-voltage equip
ment, the Sorensen line includes: regulated 
and unregulated d-c supplies, a-c line-voltage 
regulators, frequency changers, inverters, 
and converters. Contact your Sorensen rep
resentative, or write: Sorensen & Company, 
Richards Ave., South Norwalk, Conn. 9.64 

CONTROLLED 

S� POWER 

PRODUCTS 

... the widest line lets you make the wisest choice 

ISO. 

MATHEMATICAL GAMES 
A fifth collection 

of "brain-teasers" 

by Martin Gardner 

E
very eight months or so this de

partment presents an assortment 
of short problems drawn from 

various mathematical fields. This is the 
fifth such collection. The answers to the 
problems will be given here next month. 
I welcome letters from readers who find 
fault with an answer, solve a problem 
more elegantly, or generalize a problem 
in some interesting way. In the past I 
have tried to avoid puzzles that play 
verbal pranks on the reader, so I think 
it only fair to say that several of this 
month's "brain-teasers" are touched with 
whimsy. They must be read with care; 
otherwise you may find the road to a 
solution blocked by an unwarranted as
sumption. 

1. 

Mel Stover of Winnipeg was the first 
to send this amusing problem-amusing 
because of the ease with which even the 
best of geometers may fail to approach 
it properly. Given a triangle with one 
obtuse angle, is it possible to cut the 
'triangle into smaller triangles, all of 
them acute? (An acute triangle is a 
triangle with three acute angles. A right 
angle is of course neither acute nor ob
tuse.) If this cannot be done, give a 
proof of impossibility. If it can 'be done, 
what is the smallest number of acute 
triangles into which any obtuse triangle 
can be dissected? 

The illustration at right shows a typi
cal attempt that leads nowhere. The tri
angle has been divided into three acute 
triangles, but the fourth is obtuse, so 
nothing has been gained by the pre
ceding cuts. 

This delightful problem led me to ask 
myself: "What is the smallest number of 
acute triangles into which a square can 
be dissected?" For days I was convinced 
that nine was the answer; then suddenly 
I saw how to reduce it to eight. I won
der how many readers can discover an 

eight-triangle solution, or perhaps an 
even better one. I am unable to prove 
that eight is the minimum, though I 
strongly suspect that it is. 

2. 

In H. G. Wells's novel The First Men 
in the Moon our natural satellite is found 
to be inhabited by intelligent insect 
creatures who live in caverns below the 
surface. These creatures, let us assume, 
have a unit of distance that we shall call 
a "lunar." It was adopted because the 
moon's surface area, if expressed in 
square lunars, exactly equals the moon's 
volume in cubic lunars. The moon's di
ameter is 2,160. miles. How many miles 
long is a lunar? 

3. 
In 1958 John H. Fox, Jr., of the Min

neapolis-Honeywell Regulator Co., and 
L. Gerald Mamie of the Massachusetts 
Institute of Technology devised an un
usual betting game which they call Goo
gol. It is played as follows: Ask someone 
to take as many slips of paper as he 
pleases, and on each slip write a different 
positive number. The numbers may 
range from small fractions of one to a 
number the size of a "googol" (1 fol
lowed by a hundred zeros) or even 
larger. These slips are turned face-down 
and shuffled over the top of a table. One 
at a time you turn the slips face-up. The 
aim is to stop turning when you come to 
the number that you guess to be the 
largest of the series, You cannot go back 
and pick a previously turned slip. If 
you turn over all the slips, then of course 
you must pick the last one turned. 

Most people will suppose the odds 

Can this triangle be cut into acute ones? 
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Secretary Problem

▶ n unknown values
x1, . . . , xn

▶ Random order
▶ Step i :

1. Select xi and stop
2. Ignore xi and continue

Pr[We select maxi xi ]?
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Secretary Problem

x1 x2 . . . xn/2

S1
Sampling Phase

xn/2+1 . . . xn−1 xn

S2
Selection Phase

w.p. 1/2, x∗
1 ∈ S2

w.p. 1/2, x∗
2 ∈ S1

 =⇒ Pr [We select max
i

xi ] ≥ 1/4.

▶ Can get 1/e (optimal) by sampling first n/e.
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Prophet Inequality

What if we know something about the xi ’s?
[Krengel, Sucheston and Garling ’77]

X1, X2, . . . , Xn ∼ (known) D1, D2, . . . , Dn
arrive in adversarial order.

▶ Design stopping time to maximize selected value.
▶ Compare against all-knowing prophet: E[maxi Xi ].
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X1 = 3.29 X2 = 3.46 X3 = 2.94 X4 = 2.76
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Prophet Inequality [Krengel, Sucheston and Garling ’77, ’78]
∃ stopping strategy that achieves 1/2 · E[maxi Xi ],
and this is tight.

X1 = 1 w.p. 1, and X2 =
{

1/ε w.p. ε

0 w.p. 1 − ε

E [ALG] = 1 for all algorithms.

E[maxi Xi ] = 1
ε · ε + 1 · (1 − ε) = 2 − ε.

▶ Idea: Set threshold T , accept first Xi ≥ T .
▶ T : Pr[maxi Xi ≥ T ] = 1/2 works [Samuel-Cahn ’84].
▶ T = 1/2 · E[maxi Xi ] works [Kleinberg and Weinberg ’12].
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Why should we care?

We want to sell a banana to one of n buyers to maximize welfare.
▶ Option 1: Collect bids bi , sell to highest bidder.

▶ Option 2: Become a grocer!
Plan:

1. Set price p.
2. Leave store.
3. ???
4. Profit.

Price p ⇐⇒ Threshold T in PI

What about maximizing revenue?
Use “virtual valuations” to design T : ϕ(v) = v − 1−F (v)

f (v) .
[Myerson ’81]
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Why should we care?

▶ Posted prices apply when buyers arrive online.
▶ Lots of past work on this and extensions:

▶ [Hajiaghayi, Kleinberg and Sandholm ’07]
▶ [Chawla, Hartline, Malec and Sivan ’10]
▶ [Alaei ’11]
▶ [Feldman, Gravin and Lucier ’15]
▶ [Dütting, Feldman, Kesselheim and Lucier ’16]
▶ [Correa, Foncea, Pizarro and Verdugo ’19]
▶ [Assadi, Kesselheim and Singla ’21]
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Proof

X ∗ = maxi Xi
pi = Pr[X ∗ = Xi ] =⇒

∑
i pi = 1.

▶ τi : Pr[Xi ≥ τi ] = pi
▶ vi(pi) := E [Xi | Xi ≥ τi ]

▶ E[X ∗] ≤
∑

i vi(pi) · pi ,
since X ∗ ∼ D∗ with marginals p.

max
∑

i
vi(zi) · zi

s.t.
∑

i
zi ≤ 1 (1)

0 ≤ zi ≤ pi ∀i
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Idea
Reject every random variable Xi w.p. 1/2.
Otherwise accept i iff Xi ≥ τi (happens w.p. pi).

E[ALG ] =
∑

i
Pr[We reach i ] · 1/2 · pi · vi(pi)

By a union bound,
Pr[We reach i ] ≥ Pr[We pick nothing] ≥ 1 −

∑
i

pi
2 ≥ 1

2 .

▶ 1/4-approximation to E[X ∗].

Rewrite
E[ALG ] ≥

∑
i

ri · qi · pi · vi(pi)

Can we ensure ri · qi = 1/2?
▶ r1 = 1 =⇒ q1 = 1/2. Then ri+1 = ri (1 − qipi)
▶ If we set qi = 1

2ri
=⇒ ri+1 = ri − pi

2 = 1 −
∑

j≤i
pi
2 ≥ 1

2
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How to generalize this?

max
∑

i
vi(zi) · zi

s.t.
∑

i
zi ≤ 1

zi ≥ 0 ∀i

=⇒
max

∑
i

wi · zi

s.t. z ∈ P(M) (2)
0 ≤ zi ≤ 1 ∀i

▶ Let x be an optimal solution to (2). How should we round x?

Attempt #1
Create random set R where i ∈ R independently w.p. xi
(active elements).

E[
∑

i∈R wi ] =
∑

i wi · xi

R might be infeasible
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How to generalize this?

Attempt #2: Contention Resolution Scheme (CRS)
1. Create random set R where i ∈ R independently w.p. xi .
2. Drop elements from R to create feasible S.

▶ [Chekuri, Vondrák and Zenklusen ’11].
▶ CRS is c-selectable if

Pr [i ∈ S | i ∈ R] ≥ c ∀i

▶ If CRS is c-selectable =⇒ c-approximation.
▶ Observe R offline =⇒ (1 − 1/e)-selectable CRS for single item.
▶ Combine in black-box way for general constraints/objectives.
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Online Contention Resolution Schemes

Online Contention Resolution Scheme (OCRS)
The elements of R (active elements) are revealed to the algorithm
one by one in adversarial order.
▶ [Alaei ’11, Feldman, Svensson and Zenklusen ’15].
▶ ∃ 1/2-selectable OCRS for single item (tight). R = {i | Xi ≥ τi}.

Recall we guaranteed Pr [i ∈ S | i ∈ R] = ri · qi = 1/2.
Why care about OCRSs?

▶ c-selectable OCRS for C =⇒ c-approximation to Prophet
Inequality with constraint C.

▶ c-approximation to (slight variant of) Prophet Inequality for
C =⇒ c-selectable OCRS for C.
Can use prophet inequalities to design optimal OCRSs!
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Adversaries

What does the adversary know?
▶ Offline: Nothing.

1/2-OCRS for single item, 1/2-OCRS for matroids.

▶ Online: Same information as the Algorithm at every step.
1/2-OCRS for single item, 1/4-OCRS for matroids.

▶ Almighty: All realizations and randomness of the Algorithm.
1/4-OCRS for single item, 1/4-OCRS for matroids.

Greedy OCRS (Informal)
Decides (randomly) which elements to select before it sees R.
▶ Works against almighty adversary.
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Adversaries

What does the adversary know?
▶ Offline: Nothing.

1/2-OCRS for single item, 1/2-OCRS for matroids.
▶ Online: Same information as the Algorithm.

1/2-OCRS for single item, 1/4-OCRS for matroids.
▶ Almighty: All realizations and randomness of the Algorithm.

1/4 =⇒ 1/e -OCRS for single item, 1/4-OCRS for matroids.

Greedy OCRS (Formal)
Create Fx ⊆ I before seeing R. When element i arrives, greedily
select i iff i ∈ R & Si−1 + i ∈ Fx .

Theorem [L. ’22]
∃1/e-selectable Greedy OCRS for single items, and this is the best
possible.
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Recall x optimal solution to LP and
∑

i xi ≤ 1 (single item).

Idea
Create set T where i ∈ T independently w.p. 1−e−xi

xi
.

Greedily select i if i ∈ R ∩ T .
▶ Simulates ”splitting” i into many small elements.
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Pr[i is selected] = Pr[i ∈ T ] ·
∏
j<i

(1 − Pr[j is selected])

≥ 1 − e−xi

xi

∏
j<i

(
1 − xj · 1 − e−xj

xj

)

= 1 − e−xi

xi

∏
j<i

e−xj

= 1 − e−xi

xi
· e−

∑
j<i xj

≥ (1 − e−xi ) exi −1

xi
(1)

(1) is minimized for xi → 0 =⇒ 1/e.
▶ Worst-case is n → ∞ and xi → 0 ∀i .
▶ Idea extends to partition and transversal matroids.
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Variants

What if...
▶ arrival order is random?

Prophet Secretary: (1 − 1/e)-ROCRS and ≈ 0.669-PI.
[Esfandiari, Hajiaghayi, Liaghat and Monemizadeh ’15]
[Correa, Saona and Ziliotto ’20]

▶ arrival order is chosen?

Free-Order: (1 − 1/e)-CRS and ≈ 0.7258-PI.
[Bubna and Chiplunkar ’22]

▶ X1, . . . , Xn
i.i.d.∼ D?

I.I.D.: (1 − 1/e)-CRS and ≈ 0.745-PI.
[Hill and Kertz ’82]
[Correa, Foncea, Hoeksma, Oosterwijk and Vredeveld ’21]
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Extensions to Multiple Items

1. k-Uniform Matroid:
✓ 1 − O (1/

√
k)-OCRS

✓ 1 − O
(√

log k/k
)

-Greedy OCRS

2. General Matroid:
✓ 1/2-OCRS
? 1/4-Greedy OCRS

3. Bipartite Matching:
? 0.349-OCRS
? 1/2e ≈ 0.184-Greedy OCRS

4. General Matching:
? 0.344-OCRS
? 1/2e ≈ 0.184-Greedy OCRS

5. Results extend also to submodular objective functions.
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? 1/4-Greedy OCRS

3. Bipartite Matching:
? 0.349-OCRS
? 1/2e ≈ 0.184-Greedy OCRS

4. General Matching:
? 0.344-OCRS
? 1/2e ≈ 0.184-Greedy OCRS

5. Results extend also to submodular objective functions.
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Cost Minimization

▶ Objective: Minimize selected value, compare against E[mini Xi ].
▶ Forced to select an element =⇒ upwards-closed constraint.

▶ No bounded approximation for adversarial or random order!

X1 = 1 w.p. 1, X2 =
{

1/ε w.p. ε

0 w.p. 1 − ε

E[ALG ]
E[min{X1, X2}] = 1

ε

▶ What about I.I.D.?
Intuition:
Set T = 2 · E[mini Xi ].
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Cost Minimization

▶ Objective: Minimize selected value, compare against E[mini Xi ].
▶ Forced to select an element =⇒ upwards-closed constraint.
▶ No bounded approximation for adversarial or random order!

X1 = 1 w.p. 1, X2 =
{

1/ε w.p. ε

0 w.p. 1 − ε

E[ALG ]
E[min{X1, X2}] = 1

ε

▶ What about I.I.D.?
Intuition False Intuition:
Set T = 2 · E[mini Xi ].
▶ Doesn’t work! Pr[We are forced to select Xn] → 1.
▶ Optimal single threshold T =⇒ Θ (polylog n)-approximation.
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Is Cost Minimization hopeless?

Analyze the optimal algorithm. Set τi , accept first Xi ≤ τi .
Intuition: τi = E[OPTALGi+1,...,n]. How to analyze it?

Idea
Look at ”fatness” of D’s tail. Captured by D’s Hazard Rate.

h(x) = f (x)
1 − F (x)

MHR Distribution
h is increasing.
▶ Important subclass, lots of past work by economists.

Good guarantees in many applications (e.g. revenue
maximization in auctions).
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Theorem [L.-Mehta ’22]
For every entire distribution, there exists an optimal c-approximate
cost minimization prophet inequality for single items.
▶ c is distribution-dependent. Can be arbitrarily large.
▶ Use of hazard rate in prophet inequalities as analysis tool is

new.
▶ For MHR distributions =⇒ c = 2-approximation.

Let H(x) =
∫ x

0 h(u) du (Cumulative Hazard Rate).

Entire Distribution
D is entire if H has convergent series expansion H(x) =

∑∞
i=1 aixdi

(where 0 < d1 < d2 < . . . ) for every x in the support of D.
▶ E.g. uniform, exponential, Gaussian, Weibull, Rayleigh, beta,

gamma
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c(d1) = (1 + 1/d1)
1/d1

Γ (1 + 1/d1)
= Θ

(
e1/d1

)

▶ Γ: Gamma function. Γ(n + 1) = n!.
▶ c is tight for D with H(x) = xd1

Why only for entire distributions?

Equal-Revenue Distribution:

F (x) = 1 − 1/x. E[X ] = +∞, but E[min{X1, X2}] < +∞.

H(x) = log x and its power series converges only for x ≤ 2.
▶ [Lucier ’22]
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Open Problems

▶ Extend 1/e-selectable Greedy OCRS to general matroids.
▶ Tight approximations for rank-1 prophet secretary and

free-order prophet inequality.
▶ Tight OCRSs for matchings.
▶ Extend cost PI to other constraints.
▶ Many more...
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Thank You!

Questions?
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