Simple & Optimal Greedy Online Contention Resolution Schemes Vasilis Livanos

Department of Computer Science, University of Illinois at Urbana-Champaign

Model

► Input:

Linear or Concave Program:

- max $c^T z$ s.t. $z \in \mathcal{P}(\mathcal{C})$ $0 \leq z_i \leq 1$
- max g(z)or s.t. $z \in \mathcal{P}(\mathcal{C})$ $0 < z_i < 1$
- Point $x \in \text{polytope } \mathcal{P}(\mathcal{C})$.

► Goal:

Round x while respecting constraint C.

► Idea:

Draw random $R \sim Prod(x)$ (active elements),

i.e. $i \in R$ independently with probability $x_i \forall i$.

P *R* might be infeasible.

► Idea # 2:

"Drop" elements to obtain feasible $\pi(R) \subseteq R$.

► Output:

Algorithm $\pi: 2^{\mathcal{N}} \to 2^{\mathcal{N}}$ s.t.

$$\Pr\left[i \in \pi(R) \mid i \in R\right] \geq \alpha$$

for largest α possible $\implies \alpha$ -approximation.

► Challenges:

Decide whether $i \in R$ or not **online**.

Arrival order of *i*'s is determined by **almighty** adversary.

Cannot change past decisions.

Definition 1.

A Greedy OCRS π :

- ▶ Defines a subfamily of feasible sets $\mathcal{F}_{\pi,x} \subseteq \mathcal{C}$. ▶ When $i \in R$ arrives, π selects i if $\pi(R_{i-1}) + i \in \mathcal{F}_{\pi.x}$.

- ▶ rank-1 matroids.
- ▶ partition matroids.
- ► transversal matroids.

matroids.

https://cs.illinois.edu/

Background

Algorithm π is called an **Online Contention Resolution Scheme (OCRS)**. To compare against almighty adversary, we need:

- min $\Pr[i \in \pi(R) \mid i \in R]$ is **selectability** of π
- Previous best: 1/4-selectable Greedy OCRS for matroids [FSZ '16].

► Main Idea:

I.e. $\mathcal{F}_{\pi,x} = \{\{i\} \mid i \in T\}.$

When *i* comes, greedily accept it if $i \in R \cap T$.

► Intuition:

Simulates splitting *i* into *m* elements with probability x_i/m each, as $m \to \infty$.

► Generalization:

Theorem 1

There exists a 1/e-selectable greedy OCRS for

Theorem 2

No greedy OCRS can be $(1/e + \varepsilon)$ -selectable, even for rank-1

Algorithm

Doesn't work for transversal matroids \implies need different π . Better (1 - 1/e)-approximation when $|N(u)| \ge 3$ for all elements u.

Experiments

N = 5 to 100, ITERATIONS = 200,000, REPETITIONS = 10

livanos3@illinois.edu