Simple & Optimal Greedy Online Contention Resolution Schemes
Vasilis Livanos
Department of Computer Science, University of Illinois at Urbana-Champaign

Model

- **Input:**
 - Linear or Concave Program:
 \[
 \max_c \sum_i c_i z_i \\
 \text{s.t. } z_i \in P(C), 0 \leq z_i \leq 1
 \]
 - or
 \[
 \max_i g(z_i) \\
 \text{s.t. } z_i \in P(C), 0 \leq z_i \leq 1
 \]
 - Point \(x \in \text{polytope } P(C) \).
- **Goal:**
 - Round \(x \) while respecting constraint \(C \).
- **Idea:**
 - Draw random \(R \sim \text{Prod}(x) \) (active elements), i.e., \(i \in R \) independently with probability \(x_i \) \(\forall i \).
 - \(R \) might be infeasible.
- **Idea # 2:**
 - "Drop" elements to obtain feasible \(\pi(R) \subseteq R \).
- **Output:**
 - Algorithm \(\pi : 2^N \to 2^N \) s.t.
 \[
 \Pr[i \in \pi(R) | i \in R] \geq \alpha
 \]
 - for largest \(\alpha \) possible \(\Rightarrow \alpha\)-approximation.

Background

Algorithm \(\pi \) is called an **Online Contention Resolution Scheme (OCRS)**. To compare against almighty adversary, we need:

Definition 1.
- A **Greedy OCRS** \(\pi \):
 - Defines a subfamily of feasible sets \(F_{\pi,x} \subseteq C \).
 - When \(i \in R \) arrives, \(\pi \) selects \(i \) if \(\pi(R_{i-1}) + i \in F_{\pi,x} \).

Theorem 1

There exists a \(1/e \)-selectable greedy OCRS for
- rank-1 matroids.
- partition matroids.
- transversal matroids.

Theorem 2

No greedy OCRS can be \((1/e + \varepsilon) \)-selectable, even for rank-1 matroids.

Algorithm

- **Main Idea:**
 - Create set \(T \subseteq N \), where \(i \in T \) independently with probability \(1 - \varepsilon \).
 - i.e., \(F_{\pi,x} = \{i\} | i \in T \).
 - When \(i \) comes, greedily accept it if \(i \in R \cap T \).
- **Intuition:**
 - Simulates splitting \(i \) into \(m \) elements with probability \(x_i / m \) each, as \(m \to \infty \).
- **Generalization:**
 - Doesn’t work for transversal matroids \(\Rightarrow \) need different \(\pi \).
 - Better \((1 - 1/e) \)-approximation when \(|N(u)| \geq 3 \) for all elements \(u \).

Experiments

N = 5 to 100, iterations = 200,000, repetitions = 10