(Almost) Envy-Free, Proportional and Efficient Allocations of an Indivisible Mixed Manna

Vasilis Livanos, Ruta Mehta and Aniket Murhekar

Department of Computer Science, University of Illinois at Urbana-Champaign

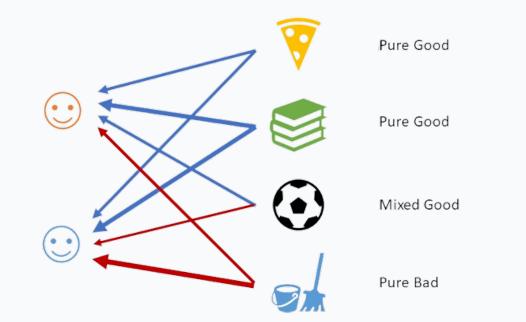
Model

- \blacktriangleright *n* agents: *N*.
- ► *m* indivisible items: *M*.
- ▶ Valuations $v_i(S)$, \forall agents *i* and sets of items *S*.
- ► **Goal:** Find allocation A that is
 - ► Fair: EFX and PropMX,
 - ► Efficient: Pareto-Optimality (PO).

Challenge: Items are **mixed manna**, i.e. item *j* might be a **good** for some agent *i* ($v_{ij} \ge 0$) and a **bad** for another agent i' ($v_{i'i} < 0$).

► Types of **Instances**:

- ▶ Separable: $M = M^+ \cup M^-$, where M^+ are goods for all and M^- are bads for all.
- **Restricted Mixed Goods (RMG):** $\forall j \in M$, either $v_{ij} \leq 0$ or $v_{ij} = v_i$ for all agents *i*.



Line thickness indicates the magnitude of absolute value.

► Model **generalizes** standard fair division of goods or bads.

- ► All allocations are **efficiently computable**.
- **Separable** instances: **PropMX** allocation.
- ► **RMG** instances:
 - ► **PropMX** allocation for **general pure bads**.
- **EFX** + **PropMX** allocation for **IDO pure bads**.
- ► An allocation *A* is:

EFX: $\forall i, i' \in N$, either we have that $\forall j \in A_{i'}$ where $v_{ii} > 0$,

or we have that $\forall j \in A_i$ where $v_{ii} < 0$,

PropMX: $\forall i \in N$, either we have

 $V_i()$

- or $\forall j \in A_i$ where $v_{ii} < 0$, we have
- ▶ **PO:** If \nexists allocation A' such the provide the provided of the provided o at least one $i \in N$.
- $j \in M^-$.

https://cs.illinois.edu/

Results

EFX + **PropMX** + **PO** allocation for **identical pure bads**.

Background

$$\mathbf{v}_i(A_i) \geq \mathbf{v}_i(A_{i'}) - \mathbf{v}_{ij},$$

$$v_i(A_i) - v_{ij} \geq v_i(A_{i'}).$$

$$A_i) + \max_{i' \neq i} \min_{j \in A_{i'}: v_{ij} > 0} v_{ij} \geq \frac{1}{n} \cdot v_i(M),$$

$$v_i(A_i) - v_{ij} \ge \frac{1}{n} \cdot v_i(M).$$

that $v_i(A'_i) > v_i(A_i)$ for all $i \in N$ and $v_i(A'_i) > v_i(A_i)$ for

▶ Pure bads: Set M^- of items such that $v_{ii} < 0$ for all $i \in N$ and

▶ M^- is **IDO** if: \exists ordering of M^- such that $\forall i \in N, v_{i1} \leq v_{i2} \leq \cdots \leq v_{i|M^-|}$. ▶ M^- is **identical** if: $\forall j \in M^-$, $\exists v_i < 0$ such that $\forall i \in N$, $v_{ij} = v_j$.

- envy-cycle elimination algorithm.
- general bads to return a **PropMX** allocation.
- manna [Aleksandrov and Walsh '19, '20].

Algorithm: EFX + PO for RMG instances with identical bads

$$M \rightarrow M^+ \uplus M^0 \uplus M^-$$
, where

 $\blacktriangleright i \in M^- \implies \forall i \in N : v_{ii} < 0.$

algorithm **RESTRICTEDGOODS**:

$$v'_{ij} = \langle$$

Phase 2: Allocate all items $j \in M^0$ to agents *i* such that $v_{ij} = 0$.

agent that is a **sink** in the **envy-graph** of the current allocation.

livanos3@illinois.edu, rutameht@illinois.edu, aniket2@illinois.edu

UNIVERSITY OF LINOS URBANA-CH

Approach

► We develop algorithm RESTRICTEDGOODS which finds an **EFX** + **PO** allocation for RMG instances with goods only, by modifying the

► The following algorithm can be modified for **RMG instances** with **IDO** bads to allocate the bads in IDO order and return an EFX allocation.

▶ The allocation of M^- can be further modified for **RMG instances** with

► Our results generalize previous work on binary and identical mixed

Algorithm

Phase 1: Allocate all items $j \in M^+$ under modified valuations v' using $\left\{egin{array}{ll} v_{ij} & ext{if } v_{ij} \geq 0 \ 0 & ext{if } v_{ij} < 0 \end{array}
ight.$

Phase 3: Allocate all items $j \in M^-$ in decreasing order of disutility to an