Prophet Inequalities for Cost Minimization

Vasilis Livanos

joint work with Ruta Mehta

University of Illinois Urbana-Champaign
ACAC 2022

August 25th, 2022
Motivation

- Want to sell an orange. We see n buyers \textit{sequentially}.
- Buyer i has private valuation v_i. How to offer prices?
 - Option 1: Run an auction. Meh.
Motivation

- Want to sell an orange. We see n buyers *sequentially*.
- Buyer i has private valuation v_i. How to offer prices?
 - Option 1: Run an auction. Meh.
 - Option 2: Become a grocer!
- Plan:
 1. Set price T.
 2. Leave store.
 3. ???
 4. Profit.
Prophet Inequality

- Worst-case order + unknown v_i's = Can't do anything.
- Random order + unknown v_i's = Secretary problem.
- Worst-case order + some knowledge of v_i's = Prophet inequality.
Prophet Inequality

- Worst-case order + unknown \(v_i \)'s = Can't do anything.
- Random order + unknown \(v_i \)'s = Secretary problem.
- Worst-case order + some knowledge of \(v_i \)'s = Prophet inequality.
- \(n \) random variables \(X_1, \ldots, X_n \sim D_1, \ldots, D_n \) arriving in adversarial order.
- Step \(i \) \(\implies \) observe realization \(x_i \).
 - Accept \(x_i \) \(\implies \) Game ends.
 - Reject \(x_i \) \(\implies \) Step \(i + 1 \).
- **Goal**: Select \(\max_i x_i \).
Let’s Play

\[
\begin{align*}
\end{align*}
\]
Let’s Play

\[x_1 = 2.74 \]
Let’s Play

- $x_1 = 2.74$
- $x_2 = 3.75$
Let’s Play

\begin{align*}
U[2, 4] & \quad U[2, 4] & \quad U[1, 5] & \quad U[0, 7] \\
\bullet \ x_1 &= 2.74 \\
\bullet \ x_2 &= 3.75 \\
\bullet \ x_3 &= 2.81
\end{align*}
Let’s Play

\[x_1 = 2.74 \]
\[x_2 = 3.75 \]
\[x_3 = 2.81 \]
\[x_4 = 5.66 \]
Prophet Inequality

- ∃ algorithm \mathcal{A} s.t. $\mathbb{E}[\mathcal{A}] \geq \frac{1}{2} \mathbb{E} [\max_{i=1}^{n} X_i]$, and this is tight [KS77].
- Many algorithms achieve $1/2$.

\mathcal{A}_T: “Fixed-Threshold” Algorithm

Set threshold T based on D_1, \ldots, D_n. Accept first $x_i \geq T$.

- How to choose T?
Prophet Inequality

- \exists \text{ algorithm } A \text{ s.t. } \mathbb{E}[A] \geq \frac{1}{2} \mathbb{E}[\max_{i=1}^{n} X_i], \text{ and this is tight } [KS77].
- Many algorithms achieve 1/2.

\(A_T \): “Fixed-Threshold” Algorithm

Set threshold \(T \) based on \(D_1, \ldots, D_n \). Accept first \(x_i \geq T \).

- How to choose \(T \)?
 1. Set \(T = \text{median of the distribution of } \max_{i=1}^{n} X_i \), i.e. \(\Pr[\max_{i=1}^{n} X_i \geq T] = \frac{1}{2} \) [Sam84].
 2. Set \(T = \frac{1}{2} \mathbb{E}[\max_{i=1}^{n} X_i] \) [KW12].
$X_1 = 1 \text{ w.p. } 1$, and $X_2 = \begin{cases} \frac{1}{\varepsilon} & \text{w.p. } \varepsilon \\ 0 & \text{w.p. } 1 - \varepsilon \end{cases}$.

For every algorithm \mathcal{A}, $\mathbb{E}[\mathcal{A}] = 1$.

Prophet:

$$\mathbb{E}[\max_i X_i] = \frac{1}{\varepsilon} \cdot \varepsilon + 1 \cdot (1 - \varepsilon) = 2 - \varepsilon.$$
If we are buying? Same problem?

Cost Prophet Inequality: Select $\min_i x_i$ subject to selecting at least one i.
Cost Prophet Inequality

- If we are buying? Same problem?
- Cost Prophet Inequality: Select \(\min_i x_i \) subject to selecting at least one \(i \).

\[
X_1 = 1 \text{ w.p. 1, and } X_2 = \begin{cases} 0 & \text{w.p. } 1 - 1/L \\ L & \text{w.p. } 1/L \end{cases}.
\]

For every algorithm \(\mathcal{A} \), \(\mathbb{E}[\mathcal{A}] = 1 \).

Prophet:

\[
\mathbb{E}[\min_i X_i] = 1 \cdot \frac{1}{L} + 0 \cdot \left(1 - \frac{1}{L}\right) = \frac{1}{L}.
\]
What *can* we do?

- Focus on I.I.D. $X_1, \ldots, X_n \sim D$.
- Single threshold not good enough*, need multiple thresholds.

Theorem 1: Optimal Threshold Algorithm \mathcal{A}

Let $G(i)$ be \mathcal{A}’s expected value, when it sees X_i, \ldots, X_n.

The algorithm \mathcal{A} which sets $\tau_i = G(i + 1)$ and accepts the first i such that $X_i \leq \tau_i$ is optimal.
Detour: Hazard Rate

- Need a tool to classify different distributions.

Hazard Rate (aka Failure Rate)

For a distribution D with cdf F and pdf f, the **hazard rate** is defined as

$$h(x) \triangleq \frac{f(x)}{1 - F(x)}.$$

- Intuition: $h(x) = \Pr [X = x \mid X \geq x]$ (for discrete distributions).
Detour: Hazard Rate

- Need a tool to classify different distributions.

Hazard Rate (aka Failure Rate)

For a distribution D with cdf F and pdf f, the hazard rate is defined as

$$h(x) \triangleq \frac{f(x)}{1 - F(x)}.$$

Intuition: $h(x) = \Pr [X = x \mid X \geq x]$ (for discrete distributions).

h monotonically increasing \implies Monotone Hazard Rate (MHR) distribution.

MHR distributions don’t have heavy tails.

Important in revenue maximization via virtual valuations.
Cumulative Hazard Rate: $H(x) = \int_0^x h(u) \, du$.

Idea: Study distributions with polynomial H; let’s call them P_H. Approximate all* other distributions via polynomials.

$$H(x) = \sum_{i=1}^{k} a_i x^{d_i}, \quad 0 < d_1 \leq \cdots \leq d_k.$$

d_1 controls how heavy D’s tail is.

$d_1 \geq 1 \implies$ MHR distribution.
Theorem 2

For every distribution $D \in P_H$ and I.I.D. random variables drawn from D, there exists a $\lambda(d_1)$-competitive cost prophet inequality, where

$$\lambda(d_1) = \frac{(1 + 1/d_1)^{1/d_1}}{\Gamma(1 + 1/d_1)}.$$

Furthermore, this is tight for $H(x) = x^{d_1}$.

- Via Stirling’s approximation

$$\lambda(d_1) \approx c \cdot e^{1/d_1}.$$
Both! Ratio can be arbitrarily bad, but constant for every fixed D.
Special Case: MHR Distributions

- For $d_1 \geq 1 \Rightarrow$ distribution is MHR.
- Special case of “regular” distributions; exponential-like.
- $\lambda(d_1)$ decreasing in $d_1 \Rightarrow$

$$\lambda(d_1) \leq \frac{(1 + 1/1)^1}{\Gamma(1 + 1/1)} = 2,$$

for all MHR distributions.
- 2 is tight for the exponential distribution.
Single Threshold

- Single threshold suffices for single-item classical prophet inequality!
- Impossible for cost prophet inequality.

Theorem 3

For every distribution $D \in P_H$ and I.I.D. random variables drawn from D, there exists a single threshold T such that accepting the first i where $X_i \leq T$ yields an $O\left((\log n)^{1/d_1}\right)$-approximation to $\mathbb{E}[\min_i X_i]$. Furthermore, this is tight for $H(x) = x^{d_1}$.
1. Optimal-threshold algorithm characterization for CPI.
2. Distribution-dependent constant for polynomial H.
3. Universal constant 2 for MHR distributions.
Open Questions

- Only use k-thresholds for $1 < k < n$. How does the ratio change?
- Get universal constant for subclass of distributions, like MHR; maybe \textit{regular}?
- Only have sample access to \mathcal{D}, how does the ratio with the number of samples?
- Impossibility result does not apply in the \textit{free order} setting. I.I.D. case is upper bound, but is a distribution-dependent constant-factor ratio possible?
QUESTIONS ?
